熵值法原理及python实现 附指标编制案例 您所在的位置:网站首页 熵值法及其操作步骤总结 熵值法原理及python实现 附指标编制案例

熵值法原理及python实现 附指标编制案例

2024-04-08 06:17| 来源: 网络整理| 查看: 265

文章目录 1.简单理解 信息熵2.编制指标 (学术情景应用)3.python实现3.1 数据准备3.2 数据预处理3.3 熵值、权重计算3.4 编制综合评价指标 熵值法也称熵权法,是学术研究,及实际应用中的一种常用且有效的编制指标的方法。

             请添加图片描述请添加图片描述请添加图片描述

1.简单理解 信息熵

机器学习中的决策树算法是对信息熵的一种典型的应用。 在信息论中,使用 熵 (Entropy)来描述随机变量分布的不确定性。 假设对随机变量X,其可能的取值有 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1​,x2​,...,xn​。即有n种可能发生的结果。其对应发生的概率依次为 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1​,p2​,...,pn​,则事件 p i p_i pi​对应的信息熵为:

     H ( X ) = H ( p ) = ∑ i = 1 n p i log ⁡ 1 p i = − ∑ i = 1 n p i log ⁡ p i H(X)=H(p)=\sum_{i=1}^np_i\log \frac{1}{p_i}=-\sum_{i=1}^{n}p_i\log p_i H(X)=H(p)=∑i=1n​pi​logpi​1​=−∑i=1n​pi​logpi​

信息熵中log的底数通常为2,理论上可以使用不同的底数。

如何理解信息熵呢,假设已知今天是周日,则对于“明天是周几”这件事,只有一种可能的结果:是周一,且p=1。则“明天是周几”的信息熵 H ( X ) H(X) H(X)为 − 1 × log ⁡ 1 = 0 -1×\log 1=0 −1×log1=0,取信息熵的最小值0。表示“明天是周几”这个话题的不确定性很低,明天周几很确定。

再比如抛一枚硬币,则结果为正面和反面的概率都是0.5。则信息熵为 l o g 2 log2 log2,相比“明天周几”这件事的信息熵稍大些了。

假设某事情有100中可能的结果,每种结果发生的概率为0.01。则 H ( X ) = l o g 100 H(X)=log100 H(X)=log100,对于等概率均匀分布的事件,不确定的结果种类越多,则熵越大。

2.编制指标 (学术情景应用)

迁移到编制指标的情形,通过下边一个简单的示例理解熵权法在学术研究中的应用。 以陈浩,刘媛华的论文《数字经济促进制造业高质量发展了吗?——基于省级面板数据和机器学习模型的实证分析》 中部分内容展示为例:  在这里插入图片描述 对于离散型的随机变量,某指标在样本中出现的频率即可视为概率P,进而求出每个指标的熵值。 而对于上图中的连续型的随机变量,则在处理思想上与离散型随机变量有所不同。 通常可以先对数据做标准化处理,假设X指标中的第i个样本的标准化处理结果为 Z i Z_i Zi​: (注意对正向指标和负)   则指标X中的第i个样本的权重为:                P i = P_i = Pi​= Z i ∑ i = 1 n Z i \frac{Z_i}{\sum_{i=1}^n{Z_i}} ∑i=1n​Zi​Zi​​

  上边说到,指标的熵值计算公式为:            H ( p ) = ∑ i = 1 n p i log ⁡ 1 p i = − ∑ i = 1 n p i log ⁡ p i H(p)=\sum_{i=1}^np_i\log \frac{1}{p_i}=-\sum_{i=1}^{n}p_i\log p_i H(p)=∑i=1n​pi​logpi​1​=−∑i=1n​pi​logpi​   为了方便求变异系数,这里计算熵值的时候常常在该公式的基础上再乘以一个常数K,即            H ( p ) = − K ∑ i = 1 n p i log ⁡ p i H(p)=-K\sum_{i=1}^{n}p_i\log p_i H(p)=−K∑i=1n​pi​logpi​  

其中 K = K= K= 1 l n ( n ) \frac{1}{ln(n)} ln(n)1​,n是样本的个数。易知,乘以常数后计算出的熵值,通常范围都是在区间[0,1]内的。

举个例子,假设一共有十个样本,且十个样本的连续型X指标数值非常相近,甚至完全一致。 对数的底数取10,则每个样本的权重都有接近或等于1/10。 通过公式 H ( p ) = − K ∑ i = 1 n p i log ⁡ p i H(p)=-K\sum_{i=1}^{n}p_i\log p_i H(p)=−K∑i=1n​pi​logpi​计算出的熵值则为1, 然后引入一个新的指标“差异系数”来刻画数据之间的差异性大小(即使用1减去熵值得到所谓“差异系数”,不要跟变异系数混淆),   第j个指标的差异系数 d j = 1 − H j d_j=1-H_j dj​=1−Hj​(H_j为第j个指标的熵值)   计算可知差异系数为0。则说明该指标在数值上不存在任何差异(雀食如此)。 随着数据本身数值上的差距的提升,指标的熵值会逐步减小,差异系数逐渐增大。这样说相信很容易理解了。   指标的熵值越小(差异系数越大),则该指标在最终要编制的指标中所占的权重则越大。

具体的权重计算公式为:           ω j = d j ∑ j = 1 m \omega_j=\frac{d_j}{\sum_{j=1}^{m}} ωj​=∑j=1m​dj​​

即某指标差异系数占所有指标差异系数和的比重。

上图的情景中,作者首先对二级指标进行衡量,然后使用熵权法,求出每个二级指标的熵值,进而求出权重,分别计算出四个一级指标; 然后再对四个一级指标再次使用熵权法计算权重,进而得到最终指标:制造业高质量发展水平。

3.python实现 3.1 数据准备

为方便读者测试,这边手动生成一段数据作为示例。 将指标1,指标2,指标3,指标4,合并编制为一个“综合指标”。

import pandas as pd import numpy as np # 1. 初始数据 假设指标4是负向指标,其余三个为正向指标 df1 = pd.DataFrame({'指标1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], '指标2': [2, 4, 6, 8, 10, 2, 4, 6, 8, 10], '指标3': [1, 2, 1, 3, 2, 1, 3, 2, 3, 1], '指标4': [3, 1, 2, 3, 5, 8, 7, 8, 8, 9] }) print(df1)

数据为DataFrame格式,效果展示如下:            在这里插入图片描述

3.2 数据预处理

然后是数据预处理部分,这里定义一个泛用性较强的标准化处理函数, 该函数对于正向指标和负向指标(越大越好的指标和越小越好的指标),可以分别进行不同的处理。 (处理逻辑通过代码可以很容易看出) 同时该函数也可以兼容只进行其中一种处理的情景。

# 2.数据预处理 定义标准化处理函数 def Standardization(data,cols1=None, cols2=None): """ :param data:目标数据 :param cols1: 需要处理的正向指标列名列表,类型为列表或None [col1, col2, col3] :param cols2: 需要处理的负向指标列名列表,类型为列表或None [col1, col2, col3] :return: 输出处理结果 """ if cols1 == None and cols2 == None: return data elif cols1 != None and cols2 == None: return (data[cols1] - data[cols1].min())/(data[cols1].max()-data[cols1].min()) elif cols1 == None and cols2 != None: return (data[cols2].max - data[cols2])/(data[cols2].max()-data[cols2].min()) else: a = (data[cols1] - data[cols1].min())/(data[cols1].max()-data[cols1].min()) b = (data[cols2].max() - data[cols2])/(data[cols2].max()-data[cols2].min()) return pd.concat([a, b], axis=1)

调用函数,进行标准化处理:

df2 = Standardization(df1, cols1=['指标1', "指标2", "指标3"], cols2=['指标4']) print(df2)

处理结果如下:    在这里插入图片描述

3.3 熵值、权重计算

然后定义一个通过熵值计算权重,及样本评分的函数。

def Weightfun(data): """ :param data: 预处理好的数据 :return: 输出权重。 """ K = 1/np.log(len(data)) e = -K*np.sum(data*np.log(data)) d = 1-e w = d/d.sum() return w

该函数的返回值有两个,w是权重,score是评分

调用函数,计算出各个指标的权重:

w_df = df2.div(df2.sum(axis=0),axis=1) w = Weightfun(w_df2) print(w)

各个指标权重如下图所示:                   在这里插入图片描述

3.4 编制综合评价指标

直接将DataFrame格式的数据与求出的权重相乘,并求和,即得到通过熵值法编制出的综合指标,代码及结果如下图所示:

df3= df2 * w df3['综合指标'] = df3.sum(axis=1)

     在这里插入图片描述

本次分享就到这里,小啾感谢您的关注与支持! 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ

P2部分示例文献截图,参考: 陈浩,刘媛华的论文《数字经济促进制造业高质量发展了吗?——基于省级面板数据和机器学习模型的实证分析》



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有