遥感在森林精准培育中的应用现状与展望 您所在的位置:网站首页 光谱成像技术在病虫害中的应用论文范文 遥感在森林精准培育中的应用现状与展望

遥感在森林精准培育中的应用现状与展望

2024-07-06 05:20| 来源: 网络整理| 查看: 265

Almeida C T D, Galvão L S , Ometto J P H B., Jacon A D, de Souza Pereira F R, Sato L Y, Lopes A P, de Alencastro Graça P M L, de Jesus Silva C V and Ferreira-Ferreira J. 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote sensing of environment, 232: 111323 [DOI: 10.1016/j.rse.2019.111323http://dx.doi.org/10.1016/j.rse.2019.111323]

Berni J, Zarco-Tejada P J, Suarez L, Fereres E. 2009. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geo. Remote Sensing, 47(3): 722-738 [DOI: 10.1109/TGRS.2008.2010457http://dx.doi.org/10.1109/TGRS.2008.2010457]

Bian L M and Zhang H C. 2020. Application of phenotyping techniques in forest tree breeding and precision forestry. Scientia Silvae Sinicae, 56(6): 113-126

边黎明, 张慧春. 2020. 表型技术在林木育种和精确林业上的应用. 林业科学, 56(6): 113-126 [DOI: 10.11707/j.1001-7488.20200612http://dx.doi.org/10.11707/j.1001-7488.20200612]

Blanco V, Blaya Ros P J, Castillo C, Soto F, Torres R and Domingo R. 2020. Potential of UAS-Based Remote Sensing for Estimating Tree Water Status and Yield in Sweet Cherry Trees. Remote Sensing, 12(15): 2359 [DOI: 10.3390/rs12152359http://dx.doi.org/10.3390/rs12152359]

Brestic M and Zivcak M. 2013. PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. Molecular Stress Physiology of Plants. Heidelberg: Springer Dordrecht: 87-131 [DOI: 10.1007/978-81-322-0807-5http://dx.doi.org/10.1007/978-81-322-0807-5]

Buddenbaum H, Rock G, Hill J and Werner W. 2015. Measuring Stress Reactions of Beech Seedlings with PRI, Fluorescence, Temperatures and Emissivity from VNIR and Thermal Field Imaging Spectroscopy. European Journal of Remote Sensing, 48: 263-282 [DOI: 10.5721/EuJRS20154815http://dx.doi.org/10.5721/EuJRS20154815]

Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J and Werner W. 2012. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sensing, 4(12): 3721-3740 [DOI: 10.3390/rs4123721http://dx.doi.org/10.3390/rs4123721]

Cao C X, Xu M, He Q S and Zhang Y. 2009. The trend of applying multi-source remote sensing data into forest health studies. The Journal of Remote Sensing, 13(s1): 401-407

曹春香, 徐敏, 何祺胜, 张颢. 2009. 多源遥感数据应用于森林健康研究的趋势. 遥感学报, 13(s1): 401-407 [DOI:10.11834/jrs.20090056http://dx.doi.org/10.11834/jrs.20090056]

Cao L, Shen G H, Dai J S and Xu J X. 2013. Status and prospects of the LiDAR-based forest biomass estimation. Journal of Nanjing Forestry University (Natural Sciences Edition), 37(3): 163-169. (曹林, 佘光辉, 代劲松,徐建新 (2013). 激光雷达技术估测森林生物量的研究现状及展望. 南京林业大学学报(自然科学版), 37: 163-169)

Cao L P. 2015. The research progresson machine recognition of plant diseases and insect pests. Chinese Agricultural Science Bulletin, 31(20): 244-249

曹乐平. 2015. 基于机器视觉的植物病虫害实时识别方法. 中国农学通报, 31(20): 244-249

Cao Q, Miao Y X, Wang H Y, Huang S Y, Cheng S S, Khosla R and Jiang R F. 2013. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154: 133-144 [DOI: 10.1016/j.fcr.2013.08.005http://dx.doi.org/10.1016/j.fcr.2013.08.005]

Cardona A and Tomancak P. 2012. Current challenges in open-source bioimage informatics. Nature Methods, 9(7): 661-665 [DOI: 10.1038/nmeth.2082http://dx.doi.org/10.1038/nmeth.2082]

Chen F, Su S C, Zhang B and Wang W H. 2014. A preliminaery study on nitrogen status diagnosis using digital image processing of hybrid hazel. Journal of Northwest Forestry University, 30(5): 111-114

陈凤, 苏淑钗, 张兵, 王文浩, 林竹. 2014. 数码图像技术在杂交榛氮素营养诊断中的初步研究. 西北林学院学报, 30(5): 111-114 [DOI: 10.3969/j.issn.1001-7461.2014.05.20http://dx.doi.org/10.3969/j.issn.1001-7461.2014.05.20]

Chéné Y, Rousseau D, Lucidarme P, Bertheloot J, Caffier V, Morel P, Belin É and Chapeau-Blondeau F O. 2012. On the use of depth camera for 3D phenotyping of entire plants. Computers & Electronics in Agriculture, 82: 122-127 [DOI: 10.1016/j.compag.2011.12.007http://dx.doi.org/10.1016/j.compag.2011.12.007]

Cheng L Z, Zhu X C, Gao L L, Wang L and Zhao G X. 2016. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model. Journal of Fruit Science, 33(10): 1219-1229

程立真, 朱西存, 高璐璐, 王凌, 赵庚星. 2016. 基于随机森林模型的苹果叶片磷素含量高光谱估测. 果树学报, 33(10): 1219-1229 [DOI:10.13925/j.cnki.gsxb.20150439http://dx.doi.org/10.13925/j.cnki.gsxb.20150439]

Cheng T, Riaño D, Koltunov A, Whiting M L, Ustin S L and Rodriguez J. 2013. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. Remote sensing of environment, 132: 1-12 [DOI: 10.1016/j.rse.2012.12.024http://dx.doi.org/10.1016/j.rse.2012.12.024]

Cheng T, Riaño D and Ustin S L. 2014a. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote sensing of environment, 143: 39-53 [DOI: 10.1016/j.rse.2013.11.018http://dx.doi.org/10.1016/j.rse.2013.11.018]

Cheng T, Rivard B, Sánchez-Azofeifa A G, Féret J B, Jacquemoud S and Ustin S L. 2014b. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 28-38 [DOI: 10.1016/j.isprsjprs.2013.10.009http://dx.doi.org/10.1016/j.isprsjprs.2013.10.009]

Cheng T, Rivard B, Sánchez-Azofeifa G, Feng J and Calvo-Polanco M. 2010. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114(4): 899-910 [DOI: 10.1016/j.rse.2009.12.005http://dx.doi.org/10.1016/j.rse.2009.12.005]

Cheng T, Rivard B and Sanchez-Azofeifa A. 2011. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115: 659-670 [DOI:10.1016/j.rse.2010.11.001http://dx.doi.org/10.1016/j.rse.2010.11.001]

Choi S T, Park D S, Kang S M and Park S J. 2011. Use of a chlorophyll meter to diagnose nitrogen status of ‘Fuyu’persimmon leaves. HortScience, 46(5): 821-824 [DOI: 10.21273/HORTSCI.46.5.821http://dx.doi.org/10.21273/HORTSCI.46.5.821]

Cohen Y, Alchanatis V, Prigojin A, Levi A, Soroker V and Cohen Y. 2012. Use of aerial thermal imaging to estimate water status of palm trees. Precision Agriculture, 13(1): 123-140 [DOI: 10.1007/s11119-011-9232-7http://dx.doi.org/10.1007/s11119-011-9232-7]

Croft H, Chen J, Zhang Y and Simic A. 2013. Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sensing of Environment, 133: 128-140 [DOI: 10.1016/j.rse.2013.02.006http://dx.doi.org/10.1016/j.rse.2013.02.006]

Dawson T P, Curran P J and Plummer S E. 1998. LIBERTY-Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65(1): 50-60 [DOI: 10.1016/S0034-4257(98)00007-8http://dx.doi.org/10.1016/S0034-4257(98)00007-8]

Di Nisio A, Adamo F, Acciani G and Attivissimo F. 2020. Fast detection of olive trees affected by xylella fastidiosa from UAVs using multispectral imaging. Sensors, 20(17): 4915 [DOI: 10.3390/s20174915http://dx.doi.org/10.3390/s20174915]

Dube T and Mutanga O. 2015. Investigating the robustness of the new Landsat-8 operational land imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 12-32 [DOI: 10.1016/j.isprsjprs.2015.06.002http://dx.doi.org/10.1016/j.isprsjprs.2015.06.002]

Dungey H S, Dash J P, Pont D, Clinton P W, Watt M S and Telfer E J. 2018. Phenotyping whole forests will help to track genetic performance. Trends in Plant Science, 23(10): 854-864 [DOI: 10.1016/j.tplants.2018.08.005http://dx.doi.org/10.1016/j.tplants.2018.08.005]

Eitel J U, Gessler P E, Smith A M and Robberecht R. 2006. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. Forest Ecology and Management, 229(1-3): 170-182 [DOI: 10.1016/j.foreco.2006.03.027http://dx.doi.org/10.1016/j.foreco.2006.03.027]

Féret J B, Francois C, Asner G, Gitelson A, Martin R, Bidel L, Ustin S L, le Maire G and Jacquemoud S. 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112(6): 3030-3043 [DOI: 10.1016/j.rse.2008.02.012http://dx.doi.org/10.1016/j.rse.2008.02.012]

Féret J B, le Maire G, Jay S, Berveiller D, Bendoula R, Hmimina G, Cheraiet A, Oliveira J, Ponzoni F, Solanki T, De Boissieu F, Chave J, Nouvellon Y, Porcar-Castell A, Proisy C, Soudani K, Gastellu-Etchegorry J P and Lefèvre-Fonollosa M. 2018. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment, 231: 110959 [DOI: 10.1016/j.rse.2018.11.002http://dx.doi.org/10.1016/j.rse.2018.11.002]

Gamon J, Penuelas J and Field C. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1): 35-44 [DOI: 10.1016/0034-4257(92)90059-Shttp://dx.doi.org/10.1016/0034-4257(92)90059-S]

Gao B C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257-266 [DOI: 10.1016/S0034-4257(96)00067-3http://dx.doi.org/10.1016/S0034-4257(96)00067-3]

Gara T, Darvishzadeh R, Skidmore A and Heurich M. 2019. Evaluating the performance of PROSPECT in the retrieval of leaf traits across canopy throughout the growing season. International Journal of Applied Earth Observation and Geoinformation, 83: 101919 [DOI: 10.1016/j.jag.2019.101919http://dx.doi.org/10.1016/j.jag.2019.101919]

Gastellu-Etchegorry J P, Martin E and Gascon F. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1): 73-96 [DOI: 10.1080/0143116031000115166http://dx.doi.org/10.1080/0143116031000115166]

Goodbody T R H, Coops N C, Tompalski P, Crawford P and Day K J K. 2017. Updating residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric point clouds. International Journal of Remote Sensing, 38: 2938-2953 [DOI: 10.1080/01431161.2016.1219425http://dx.doi.org/10.1080/01431161.2016.1219425]

Guo X, Zhu X, Li C, Wei Y, Yu X, Zhao G and Sun H. 2017. Hyperspectral inversion of potassium content in apple leaves based on vegetation index. Agricultural Sciences, 08(08): 825-836 [DOI: 10.4236/as.2017.88061http://dx.doi.org/10.4236/as.2017.88061]

Guo Y, Li Z Y, Chen E X, Tian X and Ling F L. 2015. Estimating forest above-ground biomass in the upper reaches of heihe river basin using multi-spectral remote sensing. Scientia Silvae Sinicae, 51(1): 140-149

郭云, 李增元, 陈尔学, 田昕, 凌飞龙. 2015.甘肃黑河流域上游森林地上生物量的多光谱遥感估测. 林业科学, 51(1): 140-149 [DOI: 10.11707 /j.1001-7488.20150117http://dx.doi.org/10.11707/j.1001-7488.20150117]

Gutiérrez S, Wendel A and Underwood J. 2019. Ground based hyperspectral imaging for extensive mango yield estimation. Computers and Electronics in Agriculture, 157: 126-135 [DOI: 10.1016/j.compag.2018.12.041http://dx.doi.org/10.1016/j.compag.2018.12.041]

Hu G S, Yin C J, Wan M Z, Zhang Y and Fang Y. 2020. Recognition of diseased pinus trees in UAV images using deep learning and AdaBoost classifier. Biosystems Engineering, 194: 138-151 [DOI: 10.1016/j.biosystemseng.2020.03.021http://dx.doi.org/10.1016/j.biosystemseng.2020.03.021]

Huang H G. 2019. Progress and perspective of quantitative remote sensing of forestry. Journal of Beijing Forestry University, 41(12): 1-14

黄华国. 2019. 林业定量遥感研究进展和展望.北京林业大学学报, 41(12): 1-14 [DOI:10.12171/j.1000-1522.20190326http://dx.doi.org/10.12171/j.1000-1522.20190326]

Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C and Ustin S L. 2009. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 113: S56-S66 [DOI: 10.1016/j.rse.2008.01.026http://dx.doi.org/10.1016/j.rse.2008.01.026]

Jay S, Bendoula R, Hadoux X, Féret J B and Gorretta N. 2016. A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sensing of Environment, 177: 220-236 [DOI: 10.1016/j.rse.2016.02.029http://dx.doi.org/10.1016/j.rse.2016.02.029]

Kankare V, Liang X, Vastaranta M, Yu X, Holopainen M and Hyyppa J. 2015. Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 108: 161-171 [DOI: 10.1016/j.isprsjprs.2015.07.007http://dx.doi.org/10.1016/j.isprsjprs.2015.07.007]

Kimberley M, Moore J and Dungey H. 2015. Quantification of realised genetic gain in radiata pine and its incorporation into growth and yield modelling systems. Canadian Journal of Forest Research, 45(12): 1676-1687 [DOI: 10.1139/cjfr-2015-0191http://dx.doi.org/10.1139/cjfr-2015-0191]

Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers M I, Roth M G, Bi K, Teravest D and Weebadde P. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 3(10): 160592 [DOI: 10.1098/rsos.160592http://dx.doi.org/10.1098/rsos.160592]

Li B, Liu R Y, Liu S H, Liu Q, Liu F and Zhou G Q. 2012. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Transactions of the Chinese Society of Agricultural Engineering, 28(13): 160-165

李冰, 刘镕源, 刘素红, 刘强, 刘峰, 周公器. 2012. 基于低空无人机遥感的冬小麦覆盖度变化监测. 农业工程学报, 28(13): 160-165 [DOI: 10.3969/j.issn.1002-6819.2012.13.026http://dx.doi.org/10.3969/j.issn.1002-6819.2012.13.026]

Li B Z, Li M X, Zhou X, Zhang L S and Zhang H Y. 2010. Hyperspectral estimation models for nitrogen contents of apple leaves. Journal of Remote Sensing, 14(4): 761-773

李丙智, 李敏夏, 周璇, 张林森, 张海燕. 2010. 苹果树叶片全氮含量高光谱估算模型研究. 遥感学报, 14(4): 761-773

Li M S, Tan Y, Pan J and Peng S K. 2006. Modeling forest aboveground biomass by combining the spectrum, textures with topographic features. Remote Sensing Information, 6: 6-9

李明诗, 谭莹, 潘洁, 彭世揆. 2006. 结合光谱、纹理及地形特征的森林生物量建模研究. 遥感信息, 6: 6-9

Li S, Ding X Z, Kuang Q L, Ata-Ul-Karim S T, Cheng T, Liu X J, Tian Y C, Zhu Y and Cao Q. 2018. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Frontiers in Plant Science, 9: 1834 [DOI: 10.3389/fpls.2018.01834http://dx.doi.org/10.3389/fpls.2018.01834]

Li S D. 2016. Smart Forestry: New journey of Forestry in China. Information Construction, 8: 23-25

李世东. 2016. 智慧林业: 中国林业新征途. 信息化建设, 8: 23-25

Li W T, Yang J B, Zhang J, Wang K J, Deng L, Lv Q, He S L, Xie R J, Zheng Y Q and Ma Y Y. 2018. The evaluation of chlorophyll content detection in the leaves of newhall navel orange based on different sensors. Scientia Agricultural Sinica, 51(6): 1057-1066

李文涛, 杨江波, 张绩, 王克健, 邓烈, 吕强, 何绍兰, 谢让金, 郑永强, 马岩岩. 2018. 基于不同传感器的纽荷尔脐橙叶片叶绿素含量检测技术评价. 中国农业科学, 51(6): 1057-1066 [DOI: 10.3864/j.issn.0578-1752. 2018.06.005http://dx.doi.org/10.3864/j.issn.0578-1752.2018.06.005]

Li X F, Han T T, Dong Y, Wu M and Shen X. 2011. Relationships between Spectral Reflectance and Pigment or Nitrogen Concentrations in Leaves of Padus virginiana ‘Schubert’. Scientia silvae Sinicae, 47(8): 75-81

李雪飞, 韩甜甜, 董彦, 吴曼, 沈向. 2011. 紫叶稠李叶片色素及氮含量与其光谱反射特性的相关性. 林业科学, 47(8): 75-81

Li Z Y, Liu Q W, Pang Y. 2016. Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 20(5): 1138-1150

李增元, 刘清旺, 庞勇. 2016. 激光雷达森林参数反演研究进展. 遥感学报, 20(5): 1138-1150 [DOI:10.11834/jrs.20165130http://dx.doi.org/10.11834/jrs.20165130]

Liu C, Sun P S and Liu S R. 2016. A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40(1): 80-91

刘畅, 孙鹏森, 刘世荣. 2016. 植物反射光谱对水分生理变化响应的研究进展. 植物生态学报, 40(1): 80-91 [DOI: 10.17521/cjpe.2015.0267http://dx.doi.org/10.17521/cjpe.2015.0267]

Liu G H, Huang J Q, Pan C X, Wang Z J, Zheng B S and Jin S H. 2011. Analysis of the nitrogen levels in leaves of hickory seedling by reflectance spectra. Scientia Silvae Sinicae, 47(1): 165-171

刘根华, 黄坚钦, 潘春霞, 王正加, 郑炳松, 金松恒. 2011. 基于反射光谱的山核桃幼苗氮素营养状况分析. 林业科学, 47(1): 165-171

Liu J G, Zhao C J, Yang G J, Yu H Y, Zhao X Q, Xu B and Niu Q L. 2016. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform. Transactions of the Chinese Society of Agricultural Engineering, 32(24): 98-106

刘建刚, 赵春江, 杨贵军, 于海洋, 赵晓庆, 徐波, 牛庆林. 2016. 无人机遥感解析田间作物表型信息研究进展. 农业工程学报, 32(24): 98-106 [DOI: 10.11975/j.issn.1002-6819.2016.24.013http://dx.doi.org/10.11975/j.issn.1002-6819.2016.24.013]

Liu K, Shen X, Cao L, Wang G B and Cao F L. 2018. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 465-482 [DOI: 10.1016/j.isprsjprs.2018.11.001http://dx.doi.org/10.1016/j.isprsjprs.2018.11.001]

Liu L Z, Li M J, Lin Y F, Zhang Z Z and Zhang M M. 2019. A preliminary study on nitrogen diagnosis of tea plant based on image processing. Journal of Beihua University (Natural Science), 20(1): 114-120

刘连忠, 李孟杰, 林源丰, 张正竹, 张嫚嫚. 2019. 基于图像处理的茶树含氮量诊断方法初步研究. 北华大学学报(自然科学版), 20(1): 114-120 [DOI: 10.11713/j.issn.1009-4822.2019.01.024http://dx.doi.org/10.11713/j.issn.1009-4822.2019.01.024]

Liu Q W, Li S M, Li Z Y, Fu L Y and Hu K L. 2017. Review on the applications of UAV-based lidar and photogrammetry in forestry. Scientia Silvae Sinicae, 53(7): 134-148

刘清旺, 李世明, 李增元, 符利勇, 胡凯龙. 2017. 无人机激光雷达与摄影测量林业应用研究进展. 林业科学, 53(7): 134-148 [DOI: 10.11707/j.1001-7488.20170714http://dx.doi.org/10.11707/j.1001-7488.20170714]

Liu X F, Lyu Q, He S L, Yi S L, Hu D Y, Wang Z T, Xie R J, Zheng Y Q and Deng L. 2016. Estimation of carbon and nitrogen contents in citrus canopy by low-altitude remote sensing, 9: 149-157 [DOI: 10.3965/j.ijabe.20160905.2246http://dx.doi.org/10.3965/j.ijabe.20160905.2246]

Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry J P and Schaepman M E. 2013. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 131: 85-102 [DOI: 10.1016/j.rse.2012.12.015http://dx.doi.org/10.1016/j.rse.2012.12.015]

Mei M Y and Lei Y D. 2019. Analysis on Development Trend of China’s Plantation in New Era. World Forestry Research, 32(3): 73-77

梅梦媛, 雷一东. 2019. 我国人工林新时代发展形势分析. 世界林业研究, 32(3): 73-77 [DOI: 10.13348/j.cnki. sjlyyj.2019.0006.yhttp://dx.doi.org/10.13348/j.cnki.sjlyyj.2019.0006.y]

Mishra A, Karimi D, Ehsani R and Albrigo L G. 2011. Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosystems Engineering, 110(3): 302-309 [DOI: 10.1016/j.biosystemseng.2011.09.003http://dx.doi.org/10.1016/j.biosystemseng.2011.09.003]

Montagnoli, A, Terzaghi, M, Fulgaro, N, Stoew, B, Wipenmyr, J, Ilver, D, Rusu, C, Scippa, G and Chiatante, D. 2016. Non-destructive phenotypic analysis of early stage tree seedling growth using an automated stereovision imaging method. Frontiers in Plant Science, 7(e0119): 1644 [DOI: 10.3389/fpls.2016.01644http://dx.doi.org/10.3389/fpls.2016.01644]

Mu Y, Fujii Y, Takata D, Zheng B, Noshita K, Honda K, Ninomiya S and Guo W. 2018. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle. Horticulture Research, 5: 74 [DOI: 10.1038/s41438-018-0097-zhttp://dx.doi.org/10.1038/s41438-018-0097-z]

Mutka, A M and Bart, R S. 2015. Image-based phenotyping of plant disease symptoms. Frontiers in Plant Science, 5: 734 [DOI: 10.3389/fpls.2014.00734http://dx.doi.org/10.3389/fpls.2014.00734]

Näsi R, Honkavaara E, Paivi L S, Blomqvist M, Litkey P, Hakala T, Viljanen N, Tuula K, Tanhuanpää T and Holopainen M. 2015. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sensing, 7(11): 15467-15493 [DOI: 10.3390/rs71115467http://dx.doi.org/10.3390/rs71115467]

North P R J. 1996. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 946-956 [DOI: 10.1109/36.508411http://dx.doi.org/10.1109/36.508411]

Pádua L, Marques P, Martins L, Sousa A, Peres E and Sousa J. 2020. Monitoring of chestnut trees using machine learning techniques applied to UAV-based multispectral data. Remote Sensing, 12(18): 3032 [DOI: 10.3390/rs12183032http://dx.doi.org/10.3390/rs12183032]

Pan B, Zhao G X, Zhu X C and Wang N N. 2012. Estimation of phosphorus content in apple tree canopy based on hyperspectrum. Infrared, 33(6): 27-31

潘蓓, 赵庚星, 朱西存,王娜娜. 2012. 基于高光谱的苹果树冠层磷素状况估测模型研究. 红外, 33(6): 27-31 [DOI: 10.3969/j.issn.1672-8785. 2012.06.006http://dx.doi.org/10.3969/j.issn.1672-8785.2012.06.006]

Penuelas J, Pinol J, Ogaya R and Filella I. 1997. Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, 18(13): 2869-2875 [DOI: 10.1080/014311697217396http://dx.doi.org/10.1080/014311697217396]

Perry E, Goodwin I and Cornwall D. 2018. Remote sensing using canopy and leaf reflectance for estimating nitrogen status in red-blush pears. HortScience, 53(1): 78-83 [DOI: 10.21273/HORTSC I12391-17http://dx.doi.org/10.21273/HORTSCI12391-17]

Pont D, Dungey H, Watt M, Morgenroth J and Stovold T. 2016. The use of LiDAR for phenotyping. In Forest Genetics for Productivity Conference, Rotorua, New Zealand. [2016-03-01]https://www.researchgate.net/publication/304864832https://www.researchgate.net/publication/304864832

Quan X, He B, Yebra M, Yin C, Liao Z and Li X. 2017. Retrieval of forest fuel moisture content using a coupled radiative transfer model. Environmental Modelling and Software, 95: 290-302 [DOI: 10.1016/j.envsoft.2017.06.006http://dx.doi.org/10.1016/j.envsoft.2017.06.006]

Rollin E M and Milton E J. 1998. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information. Remote Sensing of Environment, 65(1): 86-92 [DOI: 10.1016/S0034-4257(98)00013-3http://dx.doi.org/10.1016/S0034-4257(98)00013-3]

Salvatori E, Fusaro L and Manes F. 2016. Chlorophyll fluorescence for phenotyping drought-stressed trees in a mixed deciduous forest. Annali Di Botanica, 6: 39-49 [DOI: 10.4462/annbotrm-13263http://dx.doi.org/10.4462/annbotrm-13263]

Santos D A E, Daniela V S, Letícia D A, Cristina S A, Carla D N and Schramm M M. 2018. Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage. New Forests, 50: 377-388 [DOI: 10.1007/s11056-018-9662-4http://dx.doi.org/10.1007/s11056-018-9662-4]

Shen G F. 2001. Silviculture. Beijing: China Forestry Publishing: 94-97

沈国舫. 2001. 森林培育学. 北京:中国林业出版社:94-97

Shen X, Cao L, Coops N C, Fan H, Wu X Q, Liu H, Wang G B and Cao F L. 2020. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sensing of Environment, 250: 112041 [DOI: 10.1016/j.rse.2020.112041http://dx.doi.org/10.1016/j.rse.2020.112041]

Shen X, Cao L, Dong C, Sun Y, Wang G and Ruan H H. 2018. Prediction of forest structural parameters using airborne full-waveform LiDAR and hyperspectral data in subtropical forests. Remote Sensing, 10(11): 1729 [DOI: 10.3390/rs10111729http://dx.doi.org/10.3390/rs10111729]

Sun G, Liu L Y, Zheng W G, Huang W J and Yin M. 2009. Development of a solar-induced chlorophyll fluorescence monitor based on fraunhofer line principle. Transactions of The Chinese Society of Agricultural Machinery, 40: 248-236

孙刚, 刘良云, 郑文刚, 黄文江, 尹鸣 (2009). 基于夫琅和费暗线原理的太阳诱导叶绿素荧光仪. 农业机械学报, 040, 248-236

Tester M and Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science, 327(5967): 818-822 [DOI: 10.1126/science.1183700http://dx.doi.org/10.1126/science.1183700]

Wang J, Yin H L, Wang X Y and Feng Z K. 2015. Remote sensing factor optimization for forest volume estimation based on ZY-3 images. Journal of Central South University of Forestry and Technology, 35(12): 29-33

王佳, 尹华丽, 王晓莹, 冯仲科. 2015. 基于资源三号影像的森林蓄积量估测遥感因子选择. 中南林业科技大学学报, 35(12): 29-33 [DOI:10.14067/j.cnki. 1673-923x.2015.12.005http://dx.doi.org/10.14067/j.cnki.1673-923x.2015.12.005]

Wang L, Zhao G X, Zhu X C, Wang R Y and Chang C Y. 2013. Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage. Chinese Journal of Applied Ecology, 24: 2863-2870

王凌, 赵庚星, 朱西存, 王瑞燕, 常春艳. 2013. 花期苹果树冠氮素营养状况的卫星遥感反演. 应用生态学报, 24: 2863-2870 [DOI:10.13287/j.1001-9332. 2013.0462http://dx.doi.org/10.13287/j.1001-9332.2013.0462]

Wang Y and Yan Z Y. 2016. Detection system of chlorophyll content of cyclobalanopsis glauca using image processing technology. Journal of agricultural science and technology, 19(4): 59-64

王诣, 闫志勇. 2016. 基于图像处理的青冈栎叶绿素含量检测系统研究. 中国农业科技导报, 19(4): 59-64 [DOI: 10.13304/j.nykjdb.2016.424http://dx.doi.org/10.13304/j.nykjdb.2016.424]

Wang Z, Wang T, Darvishzadeh R, Skidmore A K, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M and Hearne J. 2016. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sensing, 8(6): 491 [DOI: 10.3390/rs806 0491http://dx.doi.org/10.3390/rs8060491]

Wang Z, Zhou L D, Li H, Jia J S. 2011. Predicting Nitrogen Concentrations in fresh peach leaf from hyper spectral remote sensing. Chinese Agricultural Science Bulletin, 27(04): 85-90

王植, 周连第, 李红, 贾劲松. 2011. 桃树叶片氮素含量的高光谱遥感监测. 中国农学通报, 27(04): 85-90

Wang J H, Zhao C J, Guo X W, Huang W J and Tian Q J. 2000. Study on the water content of wheat leaves by the remote sensing. Acta Agriculturae Boreali-Sinica, 15: 68-72

王纪华, 赵春江, 郭晓维, 黄文江, 田庆久. 2000. 利用遥感方法诊断小麦叶片含水量的研究. 华北农学报, 15, 68-72

Wang J X, Huang H G, Lin Q N, Wang B and Huang C. 2019. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale. Chinese Journal of Plant Ecology, 43(11): 959-968

王景旭, 黄华国, 林起楠, 王冰, 黄侃. 2019. 红外热成像监测云南松切梢小蠹虫害:针叶尺度观测. 植物生态学报, 43(11): 959-968 [DOI: 10.17521/cjpe.2019.0180http://dx.doi.org/10.17521/cjpe.2019.0180]

Wang M M, Lin J Y, Lin Y and Li Y. 2017. Subalpine coniferous forest crown information automatic extraction based on optical UAV remote sensing imagery. Forest Resources Management, 4: 82-88

王枚梅, 林家元, 林沂, 李翊. 2017. 基于无人机可见光影像的亚高山针叶林树冠参数信息自动提取. 林业资源管理, 4: 82-88 [DOI: 10.13466/j.cnki.lyzygl.2017. 04.013http://dx.doi.org/10.13466/j.cnki.lyzygl.2017.04.013]

Watt M, Buddenbaum H, Estarija H, Bown H, Gómez-Gallego M, Hartley R, Massam P, Wright L, Zarco-Tejada P and Leonardo E. 2020. Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition. ISPRS Journal of Photogrammetry and Remote Sensing, 169: 406-420 [DOI: 10.1016/j.isprsjprs.2020.09.006http://dx.doi.org/10.1016/j.isprsjprs.2020.09.006]

Wu H G and Shi J. 2004. Monitoring Technique of Pine Caterpillars with TM Image. Journal of Remote Sensing, 8(2): 172-177

武红敢, 石进. 2004. 松毛虫灾害的TM影像监测技术. 遥感学报, 8(2): 172-177

Wu W B, Zhang Z B, Zheng L J, Han C Y, Wang X M, Xu J and Wang X R. 2020. Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors, 20(13): 3729 [DOI: 10.3390/s20133729http://dx.doi.org/10.3390/s20133729]

Xie Y, Zhang J, Chen X, Pang S, Zeng H and Shen Z. 2020. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. Forest Ecosystems, 7: 33 [DOI: 10.1186/s40663-020-00237-0http://dx.doi.org/10.1186/s40663-020-00237-0]

Yang X G, Yu Y, Huang H J and Fan W Y. 2012. Journal of Infrared Millimeter Waves, 31(6): 536-543

杨曦光, 于颖, 黄海军, 范文义. 2012. 森林冠层氮含量遥感估算. 红外与毫米波学报, 31(6): 536-543 [DOI: 10.3724 /SP.J.1010.2012.00536http://dx.doi.org/10.3724/SP.J.1010.2012.00536]

Yang Y Y, Ma L F, Shi Y Z, Ruan, J Y and Li X H. 2008. Evaluation of nitrogen status in tea plants by SPAD. 28(4): 301-308

杨亦扬, 马立锋, 石元值, 阮建云, 黎星辉. 2008. 叶绿素仪 (SPAD) 在茶树氮素营养诊断中的适用性研究. 茶叶科学, 28(4): 301-308

Ye X, Abe S and Zhang S. 2019. Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precision Agriculture, 21: 198-225 [DOI: 10.1007/s11119-019-09661-xhttp://dx.doi.org/10.1007/s11119-019-09661-x]

Yi S L, Deng L, He S L, Zheng Y Q and Mao S S. 2010. Scientia Agricultura Sinica, 43(4): 780-786

易时来, 邓烈, 何绍兰, 郑永强, 毛莎莎. 2010. 锦橙叶片钾含量光谱监测模型研究. 中国农业科学, 43(4): 780-786 [DOI: 10.3864/j.issn.0578- 1752.2010.04.015http://dx.doi.org/10.3864/j.issn.0578-1752.2010.04.015]

Yi S L, Deng L, He S L, Zheng Y Q, Wang L, Zhao X Y and Niu TX.2011. Diagnosis model of Jincheng orange leaf chlorophyll content- based on digital image analysis technique. Journal of Agricultural Mechanization Research, 33: 110-115

易时来, 邓烈, 何绍兰, 郑永强, 王亮, 赵旭阳, 牛廷香. 2011. 锦橙叶片叶绿素含量诊断模型—基于数字图像分析技术. 农机化研究, 33: 110-115

Zarco-Tejada P J, Rueda C and Ustin S L. 2003. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85(1): 109-124 [DOI: 10.1016/S0034-4257(02)00197-9http://dx.doi.org/10.1016/S0034-4257(02)00197-9]

Zarco-Tejada P J, Camino C, Beck P S A, Calderon R, Hornero A, Hernández-Clemente R, Kattenborn T, Montes-Borrego M, Susca L, Morelli M, Gonzalez-Dugo V, North P R J, Landa B B, Boscia D, Saponari M and Navas-Cortes J A. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4: 432-439 [DOI: 10.1038/s41477-018-0189-7http://dx.doi.org/10.1038/s41477-018-0189-7]

Zarco-Tejada, P J, Diaz-Varela, R, Angileri V and Loudjani P. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99 [DOI: 10.1016/j.eja.2014.01.004http://dx.doi.org/10.1016/j.eja.2014.01.004]

Zarco-Tejada, P J, Guilléncliment, M L, Hernándezclemente, R, Catalina A, González M R and Martín P. 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agricultural and Forest Meteorology, 171-172: 281-294 [DOI: 10.1016/j.agrformet.2012.12.013http://dx.doi.org/10.1016/j.agrformet.2012.12.013]

Zeng B B, Zhang X L, Lu C K, Bi H M and Zhu F E. 2008. Current situation and prospects of the research on remote sensing in the monitor of forest pests. Forest Pest and Disease, 27(2): 24-29

曾兵兵, 张晓丽, 路常宽, 毕华明, 朱凤恩. 2008. 森林病虫害遥感监测研究的现状与展望. 中国森林病虫, 27(2): 24-29

Zhang F and Zhou G S. 2018. Research progress on monitoring vegetation water content by using hyperspectral remote sensing. Chinese Journal of Plant Ecology, 42: 517-525

张峰, 周广胜. 2018. 植被含水量高光谱遥感监测研究进展. 植物生态学报, 42: 517-525 [DOI: 10.17521/cjpe.2017.0313http://dx.doi.org/10.17521/cjpe.2017.0313]

Zhang H, Pan J, Ju Y W and Liao Z F. 2014. Early Detection of Pine Wilt Disease in Pinus massioniana with Hyperspectral Data. Journal of Northeast Forestry University, 42(11): 115-119

张衡, 潘洁, 巨云为, 廖振峰. 2014. 基于高光谱数据的马尾松松萎蔫病早期监测. 东北林业大学学报, 42(11): 115-119 [DOI:10.13759/j.cnki.dlxb.20141106.001http://dx.doi.org/10.13759/j.cnki.dlxb.20141106.001]

Zhang N, Zhang X, Guijun Y, Zhu C, Huo L and Feng H. 2018. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sensing of Environment, 217: 323-339 [DOI: 10.1016/j.rse.2018.08.024http://dx.doi.org/10.1016/j.rse.2018.08.024]

Zhang P, Yang L, Cong J and Shen H L. 2008. A disscusion on precision of silviculture technology. World Forestry Research, 21(1): 34-39

张鹏, 杨玲, 丛健, 沈海龙. 2008. 论森林培育技术的精准化. 世界林业研究, 21(1): 34-39

Zhao C J. 2019. Big data of plant phenomics and its research progress. Journal of Agricultural Big Data, 1(2): 5-14

赵春江 (2019). 植物表型组学大数据及其研究进展. 农业大数据学报, 1(2): 5-14 [DOI: 10.19788/j.issn.2096-6369.190201http://dx.doi.org/10.19788/j.issn.2096-6369.190201]

Zhao J, Han T T, Zhang X X, Li X and Shen X. 2011. Preliminary study of whangkeumbae leaf nutrients status diagnosis by using digital image processing technique. Chinese Agricultural Science Bulletin, 27(13): 272-276

赵静, 韩甜甜, 张鲜鲜, 李欣, 沈向. 2011. 应用数码图像技术对梨树叶片营养诊断的初探. 中国农学通报, 27(13): 272-276

Zhao T X, Guo B, An X M and Zhang W J. 2012. The study of stomatal conductance estimation of Populus deltoids Bartr.×Populus ussuriensis Kom. by infrared thermography. Chinese Agricultural Science Bulletin, 28(31): 65-70

赵田欣, 郭斌, 安新民,张文杰. 2012. 美洲黑杨与大青杨杂种叶片气孔导度的红外热像测量方法研究. 中国农学通报, 28(31): 65-70

Zhao X, Burks T F, Qin J W and Ritenour M A. 2009. Digital microscopic imaging for citrus peel disease classification using color texture features. Applied Engineering in Agriculture, 25(5): 769-776 [DOI: 10.13031/2013.28845http://dx.doi.org/10.13031/2013.28845]

Zhou J, Tardieu F, Pridmore T, Doonan J, Reynolds D, Hall N, Griffiths S, Cheng T, Zhu Y and Wang X E. 2018. Plant phenomics: history, present status and challenges. Journal of Nanjing Agricultural University, 41(4): 580-588 (周济, Tardieu, F., Pridmore, T., Doonan, J., Reynolds, D., Hall, N., Griffiths, S., 程涛, 朱艳, 王秀娥. 2018. 植物表型组学:发展、现状与挑战. 南京农业大学学报, 41(4): 580-588) [DOI: 10.7685/jnau.201805100http://dx.doi.org/10.7685/jnau.201805100]

Zhu C H, Qu S and Zhang X L. 2016. Dendrolimus tabulaeformis disaster monitoring and analysis of its influencing factors through remote sensing technology. Journal of Remote Sensing, 20(4): 653-664

朱程浩, 瞿帅, 张晓丽. 2016. 油松毛虫灾害遥感监测及其影响因子分析. 遥感学报, 20(4): 653-664 [DOI: 10.11834/jrs.20165299http://dx.doi.org/10.11834/jrs.20165299]

Zhu X C, Zhao G X, Dong F, Wang L, Lei T and Zhan B. 2009. Monitoring models for phosphorus content of apple flowers based on hyperspectrum. Chinese Journal of Applied Ecology, 20(10): 2424-2430

朱西存, 赵庚星, 董芳, 王凌, 雷彤, 战兵. 2009. 基于高光谱的苹果花磷素含量监测模型. 应用生态学报, 20(10): 2424-2430

Zhu X C, Zhao G X, Jiang Y M, Wang L, Chen H Y and Wang L. 2011. Estimation of SPAD value of apple leaf in different phenophase based on hyperspectral red edge parameters. Infrared, 32(12): 31-38

朱西存, 赵庚星, 姜远茂, 王凌, 陈红艳, 王利. 2011. 基于高光谱红边参数的不同物候期苹果叶片的SPAD值估测. 红外, 32(12): 31-38

Zhu X C, Zhao G X, Sui X Y, Lei T and Sun D G. 2010. Estimation of kalium content in apple flowers based on spectral analysis technique. Infrared, 31: 19-23

朱西存, 赵庚星, 隋学艳, 雷彤, 孙顶国. 2010. 基于光谱分析技术的苹果花钾素含量估测研究. 红外, 31: 19-23

Zhu X L and Liu D S. 2014. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS Journal of Photogrammetry and Remote Sensing,96:1-11[10.1016/j.isprsjprs.2014.06.012]



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有