终于有人把CMOS、SOI和FinFET技术史梳理清楚了 您所在的位置:网站首页 planer的意思 终于有人把CMOS、SOI和FinFET技术史梳理清楚了

终于有人把CMOS、SOI和FinFET技术史梳理清楚了

2023-10-30 14:08| 来源: 网络整理| 查看: 265

1958年,第一个集成电路触发器是在德州仪器由两个晶体管构建而成。而今天的芯片包含超过10亿个晶体管,这种增长的规模来自于晶体管的不断缩小以及硅制造工艺的改进。

历史

真空管的发明是电子工业发展的重要动力。但是,在第二次世界大战之后,由于需要大量的分立元件,设备的复杂性和功耗显着增加,而设备的性能却不断下降,其中一个例子是波音B-29,在战争期间将由300~1000个真空管组成。每个附加组件会降低系统可靠性并增加故障排除时间。

1947年出现了一个重大突破,它来自于贝尔实验室的John Baden,William Shockley和Watter Brattain,他们揭幕了锗晶体管的第一个功能点。1950年,Shockley开发了第一个双极结晶体管(BJT)。与真空管相比,晶体管更可靠,功效高,尺寸更小。

晶体管是可以被看作电控开关的3端子器件。其中一个终端充当控制终端。理想情况下,如果将电流施加到控制端,则该装置将充当两个端子之间的闭合开关,否则其作为开路开关。1958年,德州仪器的杰克·基尔比(Jack Kilby)建立了第一个集成电路,由两个双极晶体管组成,该晶体管连接在单片硅片上,从而启动了“硅时代”。

早期IC使用双极结晶体管。由于有更多的静态功耗,BJT的这一缺点是个问题。这意味着即使在电路没有切换的情况下也会产生电流。这限制了可以集成到单个硅芯片中的晶体管的最大数量。

在1963年,飞兆半导体的Frank Wanlass和CTSah公布了第一个逻辑门,其中n沟道和p沟道晶体管用于互补对称电路配置。这就是今天所谓的CMOS。它吸收了几乎零静态功耗。

早期IC使用NMOS技术,因为与CMOS技术相比,NMOS工艺相当简单,成本更低,并且可以将更多的器件封装到单个芯片中。英特尔在1971年发布了首款采用该工艺的微处理器。

关于NMOS与CMOS晶体管的静态功耗,在1980年代成为一个严重的问题,因为数千个晶体管集成到单个芯片中,由于低功耗,可靠的性能和高速度的特点,CMOS技术很快就替代了几乎所有数字应用的NMOS和双极技术。

在接下来的几年中,CMOS扩展和处理技术的改进使得电路速度不断提高,以及芯片的封装密度和基于微电子产品的性能与成本比的进一步改进。

在这里,我们会讨论Bulk-Si CMOS技术,以及相关的解决方案。我们还讨论晶体管材料的物理尺寸限制,以及高级技术节点中使用的新材料。如今,由于32nm技术节点之下遇到的各种限制,业界正在计划从晶体管技术的使用转向新的器件结构:SOI和FinFET替代了平面bulk体硅晶体管。

MOSFET器件概述

在这里,我们首先讨论CMOS的核心单元,即MOSFET或简单MOS的基本结构、操作和重要的术语。第一个成功的MOS晶体管使用栅极材料的金属,用于绝缘体的SiO2和用于衬底的半导体。因此,该器件被命名为MOS晶体管。场效应晶体管(FET)的栅极通过晶体管导通和关断,其中电场通过栅极氧化物。

1、MOS结构

根据传导通道的类型,MOS主要分为两种结构:n沟道和p沟道MOS。在这里,我们将仅概述NMOS晶体管,因为两个晶体管本质上是互补的。

MOS晶体管是具有漏极、源极、栅极和衬底的4端子器件。图1显示了NMOS的3维结构。NMOS晶体管形成在p型硅衬底(也称为本体)上。在器件的顶部中心部分,形成一个低电阻率的电极,它通过一个绝缘体与本体分开。通常,使用n型或p型重掺杂的多硅作为栅极材料。这里,使用二氧化硅(SiO 2或简单的氧化物)作为绝缘体。通过将供体杂质植入基板的两侧,形成源极和漏极。在图1中,这些区域由n +表示,表示供体杂质的重掺杂。这种重掺杂导致这些区域的低电阻率。

如果两个n +区被偏置在不同的电位,则处于较低电位的n +区将作为源,而另一个将作为漏极。因此,漏极和源极端子可以根据施加到它们的电位进行互换。源极和漏极之间的区域称为具有宽度-W和长度-L的沟道,其在决定MOS晶体管的特性中起重要作用。

图1. NMOS晶体管的结构

2、为什么选择多晶硅作为栅极材料?

在半导体工业的早期,金属铝通常被用作MOS的首选栅极材料。但是后来,多晶硅被选为栅极材料。这主要出于两方面的考虑,如下所述。

早期的MOS制造过程始于源和漏区域的定义和掺杂。然后,使用限定稍后形成铝金属栅极的栅极氧化物区域的栅极掩模。

这种制造工艺的主要缺点之一是:如果栅极掩模未对准,则其产生寄生重叠输入电容C gd和C gs,如图-2(a)所示。电容C gd因为反馈电容而更为有害。作为铣刀电容的结果,晶体管的切换速度降低。

栅极掩模的未对准的一个解决方案是所谓的“自对准栅极工艺”。该过程开始于栅极区域的产生,随后使用离子注入产生漏极和源极区域。栅极下的薄栅极氧化物用作掩模,用于防止在栅极区(通道)下进一步掺杂的掺杂工艺。因此,该过程使得栅极相对于源极和漏极自对准。其结果是,源和漏极不延伸到栅极下。从而减少C gd和C gs,如图2(b)所示。

图2.(a)Cgd - Cgs寄生间接反应,(b)由于自对准过程而减少Cgd和Cgs

漏极和源极的掺杂过程需要非常高的温度退火方法(> 8000 * C)。如果使用铝作为栅极材料,它将在如此高的温度下熔化。这是因为Al的熔点约为660℃。但是,如果使用多晶硅作为栅极材料,则其不会熔化。因此,可以利用多晶硅栅极进行自对准工艺。虽然在Al栅极下,这是不可能的,这导致高C gd和C gs。未掺杂的多晶硅具有非常高的电阻率,约为10 8欧姆/厘米。因此,以减少其电阻的方式掺杂多晶硅。

选择多晶硅的另一个原因是MOS晶体管的阈值电压与栅极和沟道之间的功函数差异相关。此前,当工作电压在3-5伏范围内时,使用金属栅极。但是,随着晶体管的缩小,这确保了器件的工作电压也降低了。具有这种高阈值电压的晶体管在这种条件下变得不可操作。使用金属作为栅极材料导致与多晶硅相比高的阈值电压,因为多晶硅将具有与体Si沟道相同或相似的组成。此外,由于多晶硅是半导体,因此其功函数可以通过调整掺杂水平进行调制。

3、MOS工作原理

对于MOS晶体管,栅极电压确定漏极和源极之间的电流是否发生。当向NMOS的栅极施加足够正的V gs电压时,如图3所示,在栅极上放置正电荷。这些正电荷将排斥p型衬底的少数载流子,即从衬底的空穴,留下产生耗尽区的负电荷受体离子。如果我们进一步增加Vgs,在某种潜在的水平,甚至会使表面吸引电子。所以,大量的电子被吸引到表面。这种情况称为反转,因为p型体的表面通常具有大量的孔,但是较新的表面具有大量的电子。

漏极到本体和源极到本体之间保持逆向偏差。在图3中,源到本体保持零偏差。由于漏极对本体的电位比源至本体电位更积极,因此漏极到体内的反向偏压较大,导致与源极侧相比,漏极区下方的耗尽更深。

当施加到漏极到源极之间的正电位时,电子从源极流过导电沟道并被漏极排出。所以,正电流Id从漏极到源极流动。

图3.反相区域中的NMOS晶体管

技术演进

对电池供电的便携式小物件的需求日益增加,包括助听器、手机、笔记本电脑等应用在内。这种应用的功耗更低,开发更便宜。对于这种便携式设备,功率消耗是重要指标,因为电池提供的功率相当有限。不幸的是,电池技术不能期望每5年将电池存储容量提高30%以上。这不足以应对便携式设备中增加的功耗。

1965年,戈登·摩尔(Gordon E. Moore)预测,集成电路中的晶体管数量将会每两年翻一番(广为人知的摩尔定律)。通过使晶体管更小,可以在硅晶片上制造更多的电路,因此电路变得更便宜。通道长度的减小可以实现更快的开关操作,因为电流从漏极流到源极需要更少的时间。

换句话说,较小的晶体管导致较小的电容。这导致晶体管延迟的减少。由于动态功率与电容成正比,功耗也降低。晶体管尺寸的这种减小称为缩放。每次晶体管都被缩放,我们说一个新的技术节点被引入。晶体管的最小通道长度称为技术节点。例如,0.18微米,0.13微米,90纳米等,每一次微缩,都会伴随着成本、性能和功耗水平的改善。

小尺寸效应

对于长通道器件,通道四边的“边缘效应”真的可以忽略不计。对于长通道器件,电场线垂直于通道的表面。这些电场由栅极电压和背栅极电压控制。但是,对于短通道器件,漏极和源极结构更靠近通道,特别是当通道中的纵向电场进入画面时。纵向电场由漏源电压控制。纵向电场平行于电流流动方向。如果通道长度不大于源极和漏极耗尽宽度的总和,则该器件称为短沟道器件。

在本节中,我们将讨论由于短通道中二维电势分布和高电场而产生的各种不良影响。

1、载波速度饱和度和移动性降级

通道中的电子漂移速度与较低电场值的电场成比例。这些漂移速度往往会在高电场饱和。这称为速度饱和度。对于短通道器件,纵向电场通常也增加。在这样的高电场下,发生影响MOSFET的I-V特性的速度饱和。对于相同的栅极电压,MOSFET的饱和模式在较低的漏 - 源电压值和饱和电流降低的情况下实现。

由于较高的垂直电场,通道的载流子离开氧化物界面。这导致载流子迁移率的降低和漏极电流的降低。

2、漏极感应障碍降低

另一个短通道效应称为DIBL,其指的是在较高漏极电压下阈值电压的降低。如果栅极电压不足以反转表面(即栅极电压



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有