Synthesis, spectroscopic studies, and single crystal X 您所在的位置:网站首页 morpholinium Synthesis, spectroscopic studies, and single crystal X

Synthesis, spectroscopic studies, and single crystal X

2023-03-12 19:50| 来源: 网络整理| 查看: 265

References

Aharon, S.; Cohen, B. E.; Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C.2014, 118, 17160–17165.10.1021/jp5023407Search in Google Scholar

Ahmad, S.; Kanaujia, P. K.; Niu, W.; Baumberg, J. J.; Prakash, G. V. In situ intercalation dynamics in inorganic – organic layered perovskite thin films. Appl. Mater. Interfaces2014, 6, 10238–10247.10.1021/am501568jSearch in Google Scholar PubMed PubMed Central

Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR97: a new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119.10.1107/S0021889898007717Search in Google Scholar

Alvarez, S.; Avnir, D.; Llunell, M.; Pinsky, M. Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds. New J. Chem.2002, 26, 996–1009.10.1039/b200641nSearch in Google Scholar

Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A.2013, 1, 5628–5641.10.1039/c3ta10518kSearch in Google Scholar

Bernal, C.; Yang, K. First – principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3. J. Phys. Chem.C.2014, 118, 24383–24388.10.1021/jp509358fSearch in Google Scholar

Bresse, N. E.; O’Keefe, M. Bond-valence parameters for solids. Acta Crystallogr.1991, B47, 192–197.10.1107/S0108768190011041Search in Google Scholar

Brown, I. D. The Chemical Bond in Inorganic Chemistry. Oxford University Press: Oxford, UK, 2002.Search in Google Scholar

Brown, I. D. Recent developments in the methods and applications of the bond valence model. Chem. Rev.2009, 109, 6858–6919.10.1021/cr900053kSearch in Google Scholar PubMed PubMed Central

Brown, I. D.; Altermatt, A. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr.1985, B41, 244–247.10.1107/S0108768185002063Search in Google Scholar

Bruker. SADABS. Bruker AXS Inc., Madison, WI, USA, 2001.Search in Google Scholar

Carrero, S. G.; Espallargas, G. M.; Galian, R. E.; Prieto, J. P. Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials. J. Mater. Chem. A.2015, 3, 14039–14045.10.1039/C5TA01765CSearch in Google Scholar

Dimesso, L.; Dimamay, M.; Hamburger, M.; Jaegermann, W. Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 2014, 26, 6762–6770.10.1021/cm503240kSearch in Google Scholar

Dirin, D. N.; Dreyfuss, S.; Bodnarchuk, M. I.; Nedelcu, G.; Papagiorgis, P.; Itskos, G.; Kovalenko M. V. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc.2014, 136, 6550–6553.10.1021/ja5006288Search in Google Scholar

Egger, D. A.; Kronik, L. Role of dispersive interactions in determining structural properties of organic – inorganic halide perovskites: insights from first principles calculations. J. Phys. Chem. Lett.2014, 5, 2728–2733.10.1021/jz5012934Search in Google Scholar

Farrugia, L. J. ORTEP-3 for Windows. University of Glasgow: Scotland, UK, 1999.Search in Google Scholar

Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Schilfgaarde, M. V.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590.10.1021/nl500390fSearch in Google Scholar

Furic, K.; Mohacek, V.; Bonifacic, M. Stefanic, I. J. Mol. Struct. 1992, 267, 39–44.10.1016/0022-2860(92)87006-HSearch in Google Scholar

Jelev, A.; Ciobanu, M. F.; Frunza L. FT-IR investigation of organic discharge in polluted water II. Monitoring of cyclohexylamine and morpholine. Chem. Papers. 1999, 53, 98–101.Search in Google Scholar

Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science1999, 286, 945–947.10.1126/science.286.5441.945Search in Google Scholar

Kawasaki, T.; Takahashi, M.; Ohhara, T.; Tanaka, I.; Kusaka, K.; Hosoya, T.; Yadaam, T.; Kurihara, K. Structure of morpholinium Tribromo plumbate C4H8ONH2PbBr3 studied using single-crystal neutron diffraction. J. Phys. Soc. Jpn. 2012, 81, 094602.10.1143/JPSJ.81.094602Search in Google Scholar

Keinan, S.; Avnir, D. Quantitative symmetry in structure-activity correlations. The near C symmetry of inhibitor/HIV-protease complexes. J. Am. Chem. Soc.2000, 122, 4378–4384.10.1021/ja993810nSearch in Google Scholar

Kieslich, G.; Sun, S.; Cheetham A. K. An extended tolerance factor approach for organic– inorganic perovskites. Chem. Sci.2015, 6, 3430–3433.10.1039/C5SC00961HSearch in Google Scholar

Lan, G.-X.; Wang, H.-F. Raman-spectra of diglycine selenate crystals. Spectrochim. Acta.1990, 46A, 1211–1215.10.1016/0584-8539(90)80197-7Search in Google Scholar

Lindblad, R.; Bi, D.; Park, B-W.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M. J.; Rensmo, H. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett.2014, 5, 648–653.10.1021/jz402749fSearch in Google Scholar PubMed

Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem.1999, 48, 1–121.10.1002/9780470166499.ch1Search in Google Scholar

Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 2001, 13, 3728–3740.10.1021/cm010105gSearch in Google Scholar

Mitzi, D. B.; Medeiros, D. R.; Malenfant, P. R. L. Intercalated organic–inorganic perovskites stabilized by fluoroaryl–aryl interactions. Inorg. Chem. 2002, 41, 2134–2145.10.1021/ic011190xSearch in Google Scholar PubMed

Muller, C. On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 2015, 27, 2740–2754.10.1021/acs.chemmater.5b00024Search in Google Scholar

Ok, K. M.; Halasyamani, P. S.; Casanova, D.; Llunell, M.; Alvarez, S. Distortions in octahedrally coordinated d transition metal oxides: a continuous symmetry measures approach. Chem. Mater.2006, 18, 3176–3183.10.1021/cm0604817Search in Google Scholar

Owczarek, M.; Jakubas, R.; Pietraszko, A.; Medyckid, W.; Baran J. Investigation of structure– properties relationship in a novel family of halogenoantimonates(III) and halogenobismuthates(III) with morpholinium cation: [NH2(C2H4)2O]MX4 crystal structure, phase transitions and dynamics of molecules. Dalton Trans. 2013, 42, 15069–15079.10.1039/c3dt51726hSearch in Google Scholar PubMed

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr.2015, C71, 3–8.Search in Google Scholar

Shi, S.; Li, Y.; Li, X.; Wang, H. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Mater. Horiz.2015, 2, 378–405.10.1039/C4MH00236ASearch in Google Scholar

Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high efficiency solar cells. J. Phys. Chem. Lett.2013, 4, 3623–3630.10.1021/jz4020162Search in Google Scholar

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem.2013, 52, 9019–9038.10.1021/ic401215xSearch in Google Scholar PubMed

Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett.2014, 5, 1748–1753.10.1021/jz500645nSearch in Google Scholar PubMed

Summers, S. P.; Abboud, K. A.; Farrah, S. R.; Palenik, G. J. Syntheses and structures of bismuth(III) complexes with nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid. Inorg. Chem.1994, 33, 88–92.10.1021/ic00079a017Search in Google Scholar

Yang, M.; Guo, R.; Kadel, K.; Liu, Y.; O’Shea, K.; Bone, R.; Wang, X.; He, J.; Li, W. Improved charge transport of Nb-doped TiO2 nanorods in methylammonium lead iodide bromide perovskite solar cell. J. Mater. Chem. A.2014, 2, 19616–19622.10.1039/C4TA02635GSearch in Google Scholar

Yin, W. J.; Yang, J. H.; Kang, J.; Yan, Y.; Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A.2015, 3, 8926–8942.10.1039/C4TA05033ASearch in Google Scholar

Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous symmetry measures. J. Am. Chem. Soc.1992, 114, 7843–7851.10.1021/ja00046a033Search in Google Scholar



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有