Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau (2015) 您所在的位置:网站首页 eiaw Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau (2015)

Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau (2015)

2023-04-09 13:26| 来源: 网络整理| 查看: 265

TL;DR: In this paper, the authors analyzed the Cretaceous strata exposed in the Coqen Basin (northern Lhasa subterrane), which comprises the Langshan and Daxiong Formations.

Abstract: The tectonic evolution of the Lhasa terrane (southern Tibetan Plateau) played a fundamental role in the formation of the Tibetan Plateau. However, many uncertainties remain with regard to the tectonic and paleogeographic evolution of the Lhasa terrane prior to the India-Asia collision. To determine the early tectonic processes that controlled the topographic evolution of the Lhasa terrane, we analyze the Cretaceous strata exposed in the Coqen Basin (northern Lhasa subterrane), which comprises the Langshan and Daxiong Formations. The Langshan Formation unconformably overlies the volcanic rocks of the Lower Cretaceous Zelong Group and consists of similar to 80 m of Orbitolina-bearing limestones, which were deposited in a low-energy, shallow marine environment. Micropaleontological analysis indicates that the Langshan Formation in the Coqen Basin was deposited from late Aptian to early Cenomanian times (ca. 113-96 Ma). The overlying Daxiong Formation (similar to 1700 m thick) consists of conglomerate, coarse sandstone, and siltstone with interbedded mudstone, and represents deposits of alluvial fans and braided rivers. The Daxiong Formation was deposited after the early Cenomanian (ca. 96 Ma) and accumulated until at least ca. 91 Ma, indicating accumulation rates of greater than 0.3 km m.y.(-1). By combining paleocurrent data, sandstone petrology, detrital zircon U-Pb ages, and Hf isotope analysis, we demonstrate that the Daxiong Formation was derived from Lower Cretaceous volcanic rocks and pre-Cretaceous strata in the northern Lhasa subterrane. During Late Cretaceous time, two thrust systems with opposite vergence were responsible for transforming the northern Lhasa subterrane into an elevated mountain range. This process resulted in the evolution from a shallow marine environment (Langshan Formation) into a terrestrial depositional environment (Daxiong Formation) on the southern margin of the northern Lhasa subterrane. Given the regional paleogeographic context, we conclude that the Daxiong Formation in the Coqen Basin records local crustal shortening and flexure resulting in foreland basin development on the southern margin of the northern Lhasa subterrane, which implies early topographic growth of the northern Lhasa subterrane in southern Tibet prior to the India-Asia collision.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有