俄歇电子能谱基本原理 您所在的位置:网站首页 dsp硬件 俄歇电子能谱基本原理

俄歇电子能谱基本原理

2023-03-08 12:52| 来源: 网络整理| 查看: 265

俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子。1953年,俄歇电子能谱逐渐开始被实际应用于鉴定样品表面的化学性质及组成的分析。其特点在俄歇电子来自浅层表面,仅带出表面的资讯,并且其能谱的能量位置固定,容易分析。

1.俄歇电子能谱基本原理

入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。

入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。

如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。同样,LMM俄歇电子是L层电子被激发,M层电子填充到L层,释放的能量又使另一个M层电子激发所形成的俄歇电子。

俄歇电子能谱

2.俄歇电子能谱发展背景

最近十年中,固体表面分析方法获得了迅速的发展,它是目前分析化学领域中最活跃的分支之一。 它的发展与催化研究、材料科学和微型电子器件研制等有关领域内迫切需要了解各种固体表面现象密切相关。各种表面分析方法的建立又为这些领域的研究创造了很有利的条件。

在表面组分分析方法中,除化学分析用电子能谱以外,俄歇电子能谱是最重要的一种。目前它已广泛地应用于化学、物理、半导体、电子、冶金等有关研究领域中。

虽然早在 1925 年法国人俄歇就已在威尔逊云室内首次发现了俄歇电子的径迹,1953 年兰德从二次电子能量分布曲线中第一次辨认出俄歇电子谱线, 但是由于俄歇电子谱线强度低,它常常被淹没在非弹性散射电子的背景中,所以检测它比较困难。 六十年代末期, 由于采用了电子能量分布函数的微分法和使用低能电子衍射的 电子光学系统,才使检测俄歇电子的仪器技术有了突破。 1969 年圆筒形电子能量分析器应用于AES谱仪, 进一步提高了分析的速度和灵敏度。 七十年代以来,AES已迅速地发展成为强有力的固体表面化学分析方法。

3.俄歇电子能谱仪器分类

电子束轰击材料表面,会产生表征元素种类及其化学价态的二次电子,这种二次电子称为俄歇电子。俄歇电子的穿透能力弱,故可以用来分析表面1nm以内几个原子层的成分。如配上溅射离子枪可对试样进行逐层分析;扫描电镜可以附加俄歇谱仪,以便对微小区域进行分析。俄歇谱仪(AES)可以对包括轻元素在内的几乎所有元素进行分析,故它对表面轻元素分析研究具有重要意义。

俄歇电子谱仪主要由提供电子束的电子枪、接收俄歇电子并向能量分析器输送的电子倍增器以及进行逐层剥离的溅射离子枪。

 



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有