急性早幼粒细胞白血病:白血病发生机制、耐药性和创新​​治疗策略的最新进展,Cancers 您所在的位置:网站首页 pml-rara融合基因阳性 急性早幼粒细胞白血病:白血病发生机制、耐药性和创新​​治疗策略的最新进展,Cancers

急性早幼粒细胞白血病:白血病发生机制、耐药性和创新​​治疗策略的最新进展,Cancers

2024-03-31 18:36| 来源: 网络整理| 查看: 265

Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies

This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5–10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有