Análisis de susceptibilidad a deslizamientos empleando el proceso de jerarquía analítica en una carretera Amazónica del Ecuador 您所在的位置:网站首页 2i4cc Análisis de susceptibilidad a deslizamientos empleando el proceso de jerarquía analítica en una carretera Amazónica del Ecuador

Análisis de susceptibilidad a deslizamientos empleando el proceso de jerarquía analítica en una carretera Amazónica del Ecuador

2024-06-18 16:42| 来源: 网络整理| 查看: 265

Abedini, M., B. Ghasemyan y M. Rezaei (2017). «Landslide susceptibility mapping in Bijar city, Kurdistan Province, Iran: a comparative study by logistic regression and AHP models». En: Environmental earth sciences 76, 1-14. Online: https://n9.cl/ghgby.

Achour, Y. y col. (2017). «Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria». En: Arabian Journal of Geosciences 10, 1-16. Online: https://n9.cl/ggext0.

Ali, S. y col. (2019). «Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan». En: Natural Hazards and Earth System Sciences 19.5,999-1022. Online: https://n9.cl/3qz9h.

Althouse, A. (2016). «Statistical graphics in action: making better sense of the ROC curve». En: International Journal of Cardiology 215, 9-10. Online: https://n9.cl/hipk6.

Althuwaynee, O. y B. Pradhan (2017). «Semiquantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City». En: Geomatics, Natural Hazards and Risk 8.2, 706-732. Online: https://n9.cl/44j52.

Asmare, D. (2023). «Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia». En: Scientific African 19, e01470. Online: https://n9.cl/7vjlh.

Bahrami, Y., H. Hassani y A. v Maghsoudi (2021). «Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran». En: GeoJournal 86, 1797-1816. Online: https://n9.cl/frz7v.

Barella, C., F. Sobreira y J. Zêzere (2019). «A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil». En: Bulletin of Engineering Geology and the Environment 78, 3205-3221. Online: https://n9.cl/z8lcl2.

Basu, T. y S. Pal (2020). «A GIS-based factor clustering and landslide susceptibility analysis using AHP for Gish River Basin, India». En: Environment, development and sustainability 22, 4787-4819. Online: https://n9.cl/uh67s2.

Benchelha, S. y col. (2020). «Landslide susceptibility mapping in the commune of Oudka, Taounate Province, North Morocco: A comparative analysis of logistic regression, multivariate adaptive regression spline, and artificial neural network models». En: Environmental & Engineering Geoscience 26.2, 185-200. Online: https://n9.cl/fxlus.

Bien, T. y col. (2022). «Landslide susceptibility mapping at sin Ho, Lai Chau province, Vietnam

using ensemble models based on fuzzy unordered rules induction algorithm». En: Geocarto International 37.27, 17777-17798.

Bragagnolo, L., R. da Silva y J. Grzybowski (2020). «Landslide susceptibility mapping with r. landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks». En: Environmental Modelling & Software 123, 104565. Online: https://n9.cl/2lss7i.

Bravo-López, E. y col. (2022). «Landslide susceptibility mapping of landslides with artificial neural networks: Multi-approach analysis of backpro-pagation algorithm applying the neuralnet package in Cuenca, Ecuador». En: Remote Sensing 14.14, 3495. Online: https://n9.cl/zihph.

Bravo, C. y col. (2017). «Indicadores morfológicos y estructurales de calidad y potencial de erosión del suelo bajo diferentes usos de la tierra en la Amazonía ecuatoriana». En: Anales de Geografía de la Universidad Complutense 37.2, 247-264. Online: https://n9.cl/2lss7i.

Carrara, A. (1983). «Multivariate models for landslide hazard evaluation». En: Journal of the International Association for Mathematical Geology 15, 403-426. Online: https://n9.cl/ij7ke.

Chanu, M. y O. Bakimchandra (2022). «Landslide susceptibility assessment using AHP model and multi resolution DEMs along a highway in Manipur, India». En: Environmental Earth Sciences 81.5, 156. Online: https://n9.cl/55hjo.

Correo (2017). Tramos de 21 vías de once provincias siguen cerrados.

Cruden, D. (1991). «A simple definition of a landslide» En: Bulletin of Engineering Geology & the Environment 43.1, 27-29. Online: https://n9.cl/b5nhdd.

Cruden, D. y D. Varnes (1996). «Landslides: investigation and mitigation». En: Transportation Research Board. Cap. Chapter 3 - Landslide types and processes, págs. 36-75.

Dahal, B. y R. Dahal (2017). «Landslide hazard map: tool for optimization of low-cost mitigation ». En: Geoenvironmental Disasters 4, 1-9. Online: https://n9.cl/xd5dr.

Dai, F. y col. (2001). «Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong». En: Environmental geology 40, 381-391. Online: https://n9.cl/pktic.

Demir, G. y col. (2013). «A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods». En: Natural hazards 65, 1481-1506. Online: https://n9.cl/4vxpj.

Dolui, B., R. Yuvaraj y G. Geetha (2019). «Landslide susceptibility mapping using AHP model in Nilgiri District». En: Thematics Journal of Geography 8.12, 189-208. Online: https://n9.cl/vy1ht.

Ecoamazónico (2014). MTOP atiende inmediatamente los 6 deslizamientos de tierra.

Ecoamazónico (2020). Reporte de un derrumbe en la vía al Tena.

Ecoamazónico (2021). Vía habilitada en el Paso Lateral.

Ercanoglu, M. y C. Gokceoglu (2004). «Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)». En: Engineering geology 75.3-4, 229-250. Online: https://n9.cl/gyhr2c.

Feizizadeh, B. y T. Blaschke (2013). «GISmulticriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran». En: Natural hazards 65, 2105-2128. Online: https://n9.cl/qlba92.

Gameiro, S., G. de Oliveira y L. Guasselli (2022). «The influence of sampling on landslide susceptibility mapping using artificial neural networks». En: Geocarto International, 1-23. Online: https://n9.cl/qiex9x.

Gobierno Cantonal de Pastaza (2020). Plan de Desarrollo y Ordenamiento Territorial del cantón Pastaza 2020-2030. Gobierno Cantonal de Pastaza.

Gobierno Provincial de Napo (2020). Plan de Desarrollo y Ordenamiento Territorial Napo 2020-2023. Gobierno Provincial de Napo.

Gudiyangada Nachappa, T. y col. (2020). «Comparison and validation of per-pixel and objectbased approaches for landslide susceptibility mapping». En: Geomatics, Natural Hazards and Risk 11.1, 572-600. Online: https://n9.cl/bxnw9.

Guevara, M. de J., N. Carbajal y J. Tuxpan Vargas (2020). «Soil deterioration in the southern Chihuahuan Desert caused by agricultural practices and meteorological events». En: Journal of Arid Environments 176, 104097. Online: https://n9.cl/j313s.

Guillen, K. y col. (2022). «Landslide susceptibility analysis based on a semiquantitative method in the sierra-costa region, michoacán, mexico». En: Physical Geography 43.4, 463-486. Online: https://n9.cl/84ebbv.

Guzzetti, F. y col. (1999). «Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy». En: Geomorphology 31.1-4, 181-216. Online:

Hamza, T. y T. Raghuvanshi (2017). «GIS based landslide hazard evaluation and zonation– A case from Jeldu District, Central Ethiopia». En: Journal of King Saud University-Science 29.2, 151-165. Online: https://n9.cl/i8u6e.

Harris, I. y col. (2020). «Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset». En: Scientific data 7.1, 109. Online: https://n9.cl/6huao.

He, Y. y R. Beighley (2008). «GIS-based regional landslide susceptibility mapping: a case study in southern California». En: Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 33.3, 380-393. Online: https://n9.cl/977ea.

Hearn, G. y A. Hart (2019). «Landslide susceptibility mapping: a practitioner’s view». En: Bulletin of Engineering Geology and the Environment 78.8, 5811-5826. Online: https://n9.cl/kvril.

Hepdeniz, K. (2020). «Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey». En: Arabian Journal of Geosciences 13.16, 795. Online: https://n9.cl/dzcxg.

Igwe, O. y col. (2020). «GIS-based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe town and environs Northeast Nigeria». En: Geoenvironmental Disasters 7, 1-16. Online: https://n9.cl/9d7nz.

Jamir, M. y col. (2022). «Landslide susceptibility mapping of Noklak Town, Nagaland, Northeast India using bivariate statistical method». En: Geological Journal 57.12, 5250-5264. Online: https://n9.cl/q0qdk.

Kincal, C. y H. Kayhan (2022). «A combined method for preparation of landslide susceptibility map in Izmir (Türkiye)». En: Applied Sciences 12.18, 9029. Online: https://n9.cl/u3cks.

Klimeš, J. y V. Rios Escobar (2010). «A landslide susceptibility assessment in urban areas based on existing data: an example from the Iguaná Valley, Medellín City, Colombia». En: Natural Hazards and Earth System Sciences 10.10, 2067-2079. Online: https://n9.cl/v4r15.

Komac, M. (2006). «A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia». En: Geomorphology 74.1-4, 17-28. Online: https://n9.cl/gw7og.

Laraque, A. y col. (2004). «ediment Transfer through the fluvial system». En: vol. 288. IAHS. Cap. Sediment yields and erosion rates in the Napo River Basin: an Ecuadorian Andean Amazon tributary, 220-225. Online: https://bit.ly/irPY.

Lee, S. y K. Min (2001). «Statistical analysis of landslide susceptibility at Yongin, Korea». En: Environmental Geology 40.9, 1095-1113. Online: https://bit.ly/3tzABol.

Mallick, J. y col. (2018). «GIS-based landslide susceptibility evaluation using fuzzy-AHP multicriteria decision-making techniques in the Abha Watershed, Saudi Arabia». En: Environmental Earth Sciences 77, 1-25. Online: https://n9.cl/uuy8p.

Mansouri Daneshvar, M. (2014). «Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran». En: Landslides 11.6, 1079-1091. Online: https://n9.cl/2azojx.

Ministerio del Ambiente de Ecuador (2014). Sistema de Clasificación de Ecosistemas del Ecuador Continental. Ministerio del Ambiente de Ecuador.

Nguyen, V. y col. (2019). «Hybrid machine learning approaches for landslide susceptibility modeling ». En: Forests 10.2, 157. Online: https://n9.cl/2i4cc.

Nhu, V. y col. (2020). «Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms». En: International journal of environmental research and public health 17.8, 2749. Online: https://n9.cl/am82bp.

Nicu, I. y A. As andulesei (2018). «GIS-based evaluation of diagnostic areas in landslide susceptibility analysis of Bahluiet, River Basin (Moldavian Plateau, NE Romania). Are Neolithic sites in danger? » En: Geomorphology 314, 27-41. Online: https://n9.cl/71hsz.

Nilsen, T. y col. (1979). Relative slope stability and land-use planning. Selected examples from the San Francisco Bay region, California. Ministerio del Ambiente de Ecuador.

Obras Públicas Ecuador (2022). Trabajamos con maquinaria y personal en coordinación con @GadPastaza y GAD de Santa Clara debido a un deslizamiento en el sector.

Okoli, J. y col. (2023). «High-Resolution Lidar- Derived DEM for Landslide Susceptibility Assessment Using AHP and Fuzzy Logic in Serdang, Malaysia». En: Geosciences 13.2, 34. Online: https://n9.cl/43tlc.

Orejuela, I. y T. Toulkeridis (2020). «Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador». En: 2020 Seventh International Conference on eDemocracy y eGovernment (ICEDEG), págs. 201-207.

Ortiz, J. y A. Martínez-Graña (2018). «A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia) ». En: Geomatics, Natural Hazards&Risk 9.1, 1106-1128. Online: https://n9.cl/hg8r7.

Ozdemir, A. (2020). «A comparative study of the frequency ratio, analytical hierarchy process, artificial neural networks and fuzzy logic methods for landslide susceptibility mapping: Ta¸skent (Konya), Turkey». En: Geotechnical and Geological Engineering 38, 4129-4157. Online: https://n9.cl/w77582.

Ozturk, D. y N. Uzel-Gunini (2022). «Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey». En: Natural Hazards 114.3, 2571-2604. Online: https://n9.cl/f0ct7.

Panchal, S. y A. Shrivastava (2020). «Application of analytic hierarchy process in landslide susceptibility mapping at regional scale in GIS environment ». En: Journal of Statistics and Management Systems 23.2, 199-206. Online: https://n9.cl/7uzpk.

Panchal, S. y A. Shrivastava (2022). «Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India». En: Ain Shams Engineering Journal 13.3, 101626. Online: https://n9.cl/b2pkh.

Pham, Q. y col. (2021). «A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping». En: Geomatics, Natural Hazards and Risk 12.1, 1741-1777. Online: https://n9.cl/719xzd.

Pourghasemi, H., B. Pradhan y C. Gokceoglu (2012). «Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran». En: Natural hazards 63, 965-996. Online: https://n9.cl/l2h6a.

Pourghasemi, H. y col. (2018). «Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005-2012 and 2013-2016) ». En: Arabian Journal of Geosciences 11, 1-12. Online: https://n9.cl/06bsn.

Raghuvanshi, T., J. Ibrahim y D. Ayalew (2014). «Slope stability susceptibility evaluation parameter (SSEP) rating scheme–an approach for landslide hazard zonation». En: Journal of African Earth Sciences 99, 595-612. Online: https://n9.cl/zxw0it.

Rivadeneira, F. y col. (2007). Breves fundamentos sobre los terremotos en el Ecuador. Corporación Editora Nacional.

Roccati, A. y col. (2021). «GIS-based landslide susceptibility mapping for land use planning and risk assessment». En: Land 10.2, 162. Online: https://n9.cl/oke3i.

Roy, J. y S. Saha (2019). «Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India». En: Geoenvironmental Disasters 6.1, 1-18. Online: https://n9.cl/ro35j.

Saaty, Thomas L. (1977). «A scaling method for priorities in hierarchical structures». En: Journal of mathematical psychology 15.3, 234-281. Online: https://n9.cl/zvwbr.

Saaty, Thomas L (1990). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. Analytic hierarchy process series. RWS Publications.

Salcedo, D. y col. (2022). «Smart City Planning Based on Landslide Susceptibility Mapping Using Fuzzy Logic and Multi-criteria Evaluation Techniques in the City of Quito, Ecuador». En: Doctoral Symposium on Information and Communication Technologies - DSICT, págs. 89-103.

Salehpour Jam, A. y col. (2021). «GIS-based landslide susceptibility mapping using hybrid MCDM models». En: Natural Hazards 108, 1025-1046. Online: https://n9.cl/in8wa.

Secretaría Técnica de la Circunscripción Territorial Especial Amazónica (2021). Plan Integral para la Amazonía 2021-203. Secretaría Técnica de la Circunscripción Territorial Especial Amazónica.

Servicio Nacional de Gestión de Riesgos y Emergencias (2022a). Informe Nro. 136 - Época lluviosa del 01 de enero al 22 de julio de 2022. Inf. téc. Servicio Nacional de Gestión de Riesgos y Emergencias.

Servicio Nacional de Gestión de Riesgos y Emergencia (2022b). Informe de Situación No. 45 – Época lluviosa a nivel Nacional - cierre. Inf. téc. Servicio Nacional de Gestión de Riesgos y Emergencias.

Soeters, R. y C. VanWesten (1996). «Slope instability recognition, analysis and zonation». En: Landslides: investigation and mitigation 247, 129-177. Online: https://n9.cl/vma1z.

Sonker, I., J. Tripathi y A. Singh (2021). «Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya». En: Quaternary Science Advances 4, 100039. Online: https://n9.cl/czyzla.

Teši´c, D. y col. (2020). «Landslide susceptibility mapping using AHP and GIS weighted overlay method: a case study from Ljig, Serbia». En: Serbian Journal of Geosciences 6.1, 9-21. Online: https://n9.cl/h2k7n.

Van Westen, C. (1997). «ILWIS Applications Guide ». En: The International Institute for Aerospace Survey y Earth Sciences. Cap. Statistical landslide hazard analysis, págs. 73-84.

Varnes, D. e International Association of Engineering Geology (2021). Landslide hazard zonation: a review of principles and practice. Unesco.

Vásquez J. y Estrada, M. (2023). «A comparative study of the bivariate statistical methods and the Analytical Hierarchical Process for the assessment of mass movement susceptibility. A case study: The LM-116 Road-Peru». En: Rudarsko-geološko-naftni zbornik 38.1, 149-166. Online: https://n9.cl/u17f0.

Wang, Z. y col. (2022). «Refined zoning of landslide susceptibility: a case study in Enshi County, Hubei, China». En: International journal of environmental research and public health 19.15, 9412. Online: https://n9.cl/kwqq4.

Wieczorek, G. (1984). «Preparing a detailed landslide-inventory map for hazard evaluation and reduction». En: Bulletin of the Association of Engineering Geologists 21.3, 337-342. Online: https://n9.cl/d0l2y.

Williams, C. y col. (1999). «A comparison of statistical methods for prenatal screening for Down syndrome». En: Applied Stochastic Models in Business and Industry 15.2, 89-101. Online: https://n9.cl/38to7.

Wubalem, A. y M. Meten (2020). «Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia». En: SN Applied Sciences 2, 1-19. Online: https://n9.cl/pg3ik.

Zhou, S., S. Zhou y X. Tan (2020). «Nationwide susceptibility mapping of landslides in Kenya using the fuzzy analytic hierarchy process model». En: Land 9.12, 535. Online: https://n9.cl/a1cjp.

Zumpano, V. y col. (2014). «A landslide susceptibility analysis for Buzau County, Romania». En: Rev. Roum. Géogr./Rom. Journ. Geogr 58.1, 9-16. Online: https://n9.cl/ten7t.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

      专题文章
        CopyRight 2018-2019 实验室设备网 版权所有