铜及铜合金的分类 您所在的位置:网站首页 黄铜以什么为主要合金元素 铜及铜合金的分类

铜及铜合金的分类

2023-07-20 17:33| 来源: 网络整理| 查看: 265

(3) 纯铜的热加工工艺性能 我们知道,热加工应选择在塑性高的温度范围内进行,那么纯铜在什么温度时塑性高呢?——人们通过实验,得到了纯铜的机械性能与温度的关系曲线:由此可看出: ①ζ b 随T↑而↓ ②在500—600℃,δ 、最小存在着“低塑性区” ——若在这个温度范围进行热加工,工件会产生热裂、热脆。 ∴(纯铜的热加工应选择在高于低塑性区的温度进行。) 即:T 热加工> 700℃ 2.3 杂质及微量元素对铜的影响 紫铜中杂质主要来自原料,同时与熔炼等工艺也有关。很多种杂质既使含量极少(甚至十万分之几)也有剧烈降低铜的导电、导热和压力加工等性能。 为改善铜的性能,有时须添加某些其它微量元素,或容许某些脱氧剂元素在铜中保持一定的残留量。 2.3.1 紫铜可按其所含杂质及微量元素的不同,分为三类: (1) 加工紫铜 有T1、T2、T3、T4 等,特点是氧含量较高; (2)无氧铜及脱氧铜 有TU1、TU2、TUP、TUMn 等,特点是氧含量极少,在脱氧铜中还残留少量脱氧剂元素; (3)特种铜 有砷铜、银铜、锑铜等;特点是分别加入了不同的微量元素。

2.3.2 杂质与微量元素对纯铜的影响 杂质与微量元素的来源: 杂质:工业纯铜中通常含有0.05-0.3%的杂质 6 微量元素:为了改善铜性能,人们有意加入某些微量元素。 (例如,为了提高Cu 的高温塑性、细化晶粒加入Ce、Zr;Ti 等元素。为了提高铜的切削性、耐磨性加入微量的Pb等)。 影响: 对性能的影响具有两重性:有利、有害 应根据具体的加工、使用条件加以控制和解决。下面,根据它们在铜中的溶解度及存在状态,分成三类来分析: 2.3.2.1 杂质及微量元素对铜的导电、导热性的影响 所有杂质及微量元素均不同程度地降低铜的导电性和导热性

。固溶于铜的元素(除银、镉以外)对于铜的导电性和导热性降低地多,而呈第二相析出的元素则对于铜的导电、导热性降低较少。 7 金属的导电性可用导电系数(单位:米/欧姆·毫米 ²)表示,也可用 1913 年制定的国标软铜(Cu+Ag≥99.90%,退火后,20℃时的电阻系数为0.017241 欧姆·毫米 ² /米或1.7241 微欧姆·厘米,导电系数为58.0 米/欧姆·毫米 ²)导电率标准(IACS)作为 100%加以比较和确定。现在铜的纯度大大提高,其导电率已增到 102%IACS 以上。加工因素对铜的导电率也有一定的影响,很大的冷加工率可使铜的导电率下降约 2%IACS。 铜及铜合金的导热系数和导电率之间存在内在的联系,在某一温度下的导热系数可根据在该温度下的导电率(%)IACS 按 估算,导电率g>25~30%IACS 的 导 电 、 导 热 、 低 合 金 化 铜 带 合 金 , 其 导 系 数 还 可 用 下 式 估 算 : 式中:λ —试验测知的合金导电系数,米/欧姆·毫米 2 X-含铜量,%(重) 2.3.2.2 杂质及微量元素对铜的软化温度和晶粒大小的影响 铜的软化温度和晶粒大小,影响到铜的加工和使用性能。

而杂质及微量元素对铜的软化温度和晶粒大小影响又很大。 固溶和生成弥散析出相得杂质和微量元素,均提高铜的软化温度。在一定范围内随这些元素含量的增加,铜的软化温度的增高;但生成氧化物的杂质,大都对铜的软化温度没有明显影响。此外,铜的软化温度与很多工艺因素有关,例如,冷加工率大冷加工前的退火温度降低、冷却慢(此时固溶体的过饱和程度小),冷加工后的退火时间等,则铜的软化温度低。

8 在含氧的导电用铜中,锑、镉、铁、磷、锡等可与氧化亚铜中的氧作用,生成它们自己的氧化物,降低了它们在铜中的固溶度,从而减弱甚至完全消除了它们对铜的软化温度的影响。砷含量 0.05%以下时,与铜中正常含量的氧无明显作用;硒、锑也与砷相似,因此,它们均提高导电用含氧铜的软化温度。

镍虽与氧化亚铜作用生成氧化镍,但对铜的软化温度影响很小。 在无氧铜中,杂质所提高的软化温度,通常比在含氧铜中要大;因为在无氧铜中,杂质不形成氧化物。银、磷、锑、镉、锡、铬等提高无氧铜的软化温度最多,砷、锡、锑等次之,硫、铁、镍、钴、锌等最少。 铜的软化温度增加,不是单个元素影响的算术和,而只是比具有最大影响的元素所提高的软化温度略高一点而已。

杂质对铜在退火时的晶粒长大有很大的影响。高纯铜的经理随退火温度的升高而迅速长大,并且晶粒尺寸也很不均匀。导电用铜则由于氧化亚铜存在,在通常的退火温度范围内,可有效地抑制晶粒长大。脱氧铜和无氧铜虽然与高纯铜有类似之处,但也由于有微量杂质析出物的存在,仍可有效控制晶粒长大,并获得均匀的晶粒尺寸。不管杂质含量如何,在生产中控制加工率、退火温度和时间,是控制再结晶晶粒长大的基本条件。

2.3.2.3 杂质及微量元素对铜的加工性能的影响 固溶的杂质及微量元素,实际不影响铜的冷、热加工性能。很少固溶或几乎不固溶于铜的杂质及微量元素,则视其所生过剩相得情况不同,对铜的压力加工性能将有着不同的影响。例如,氧、硫、硒、碲在铜中分别形成Cu2O、Cu2S、Cu2Se、Cu2Te 9 等脆性化合物,降低铜的塑性;铅、铋与铜生成易熔共晶,热轧时易裂;脆性的铋呈薄层分布在铜的晶界上,还使铜产生冷脆性。 为提高铜的高温塑性,防止热脆性,可根据相图选择那些与有害物质形成难熔化合物(熔点高于铜的熔点或热轧温度)的元素加入铜内,其加入量可根据该难熔化合物的分子式和已知有害物质含量大体算出。锂、钙、铈或混合稀土金属、锆、铀等均可消除铅等杂质的有害作用。

提高铜的高温塑性的另一种方法是细化铜锭晶粒,相对降低有害杂质在晶界上的浓度,铜中加入微量的钛、锆、铬、硼等元素,都能细化晶粒,抑制柱状晶的发展,并减小铜的高温脆性。 铜的熔铸、压力加工和试验条件也将引起铜的成分或组织变化,对铜的高温塑性也有影响。 铜在低温具有良好的塑性,但随温度的升高,往往出现一脆性区,热加工常需要在高于此脆性区的温度下进行。

脆性区与质的性质、含量、分布、固溶度变化有关。如铅呈易熔共晶,中温变成液态消弱晶间联接,使铜热脆高温时,铅、铋又固溶于铜,使塑性又有升高。 10 有些研究工作表明,铜在 300~600℃呈脆性区是杂质引起的。含氧少的铜常含一定的氢,在上述温度范围内,试样在拉伸应力作用下,氢从固溶体中析出,并在铜的致密处(首先是在晶界上)聚集起来,处于高压气体状态,使铜开裂

随温度的升高,氢又部分或全部固溶于铜,又使铜的属性增高。 实践证明:采用铜豆少(含氢也少)的电解铜,可提高铜锭和铜材的高温塑性,脱氧的铜锭在 400~600℃有明显脆性区,而用 0.03%硅加 0.01%镁脱氧的,则没有脆性区。因为磷与氢相似,为表面活性元素,易吸附在铜的晶界上,引起高温脆性。 半连铸造的紫铜锭,在横向热轧开坯时,裂的较多,而在纵向热轧开坯时,几乎不裂。说明铜锭的塑性,很明显与柱状晶的方向有关。 经多次压力加工的铜材,其高温塑性比铜锭要好得多,并且随着变形量的增加,脆性区向低温方向移动,同时,塑性下降的程度也减少,甚至变得完全看不出脆性区,这可能是因为:多次变形增加了晶粒数目和晶界总的面积,更重要的时破坏了铸造组织,压合了晶界的显微疏松等缺陷造成的。

2.4 紫铜的热处理及热处理规范 2.5 紫铜的力学性能 11 3. 黄铜 黄铜包括铜-锌二元合金(称普通黄铜或简单黄铜)和铜锌中加有其他组元的多元合金(称特殊黄铜或复杂黄铜)。 黄铜有良好的工艺性能、机械性能和耐腐蚀性,有的还有较高的导电性和导热性。是重金属加应用最广的金属材料之一。黄铜是工业上应用最广的一种铜合金,Zn 在 Cu 中的最大固溶度可达 39%(456℃)。 名称的由来:Cu—Zn 合金随(锌含量)Zn%的增加,合金的颜色也在变化。当Zn 含量达到一定值(15%)后逐渐显现出美丽的金黄色。(Zn500℃ β 塑性极高 3.3 简单黄铜中杂质的影响 简单黄铜中常见的杂质有铁、铅、铋、锑、磷和砷等,他们的影响是: 铁: 在简单黄铜中,铁作为杂质存在,对机械性能没有显著的影响。

铁在黄铜中的溶解度及小,它常以富铁相质点分布在基体中,具有细化晶粒的作用(见图 1-2-29)。当黄铜中有硅存在时,铁与硅会形成高硬度(HV950)的硅化铁质点,使切削性能变环。有的工厂在H60中加入0.3%-0.6%铁,以提高板材深冲性能,用做深冲零件,但做抗磁用黄铜零件时,含铁量要求 0.03%时,使黄铜在热加工时出现热脆性,但对冷加工性能无明显影响。

( α +β ) 两相黄铜中,铅的容许含量可以提高一些,因为这种合金在加热和冷却过程中,回发生固态变相(α +β )  β )时可使铅大部分转入晶内,减轻其危害性。 铋常呈连续的脆性薄膜分布在黄铜晶界上,既产生热脆性,又产生冷脆性,对黄铜的危害性远比铅大(约为铅地 5-10 倍),其允许含量比铅更小(见表1-2-5) 减轻铅和铋的有害影响的有效途径是加入能与这些杂质形成弥散的高熔点金属化合物的元素,使杂质质点均匀分布在晶粒内部。如锆可分为铅与铋形成高熔点稳定化合物ZrxPby(2000°C)和ZrxBiy(2200°C),因此,黄铜中加入少量锆可以抵消铅铋的有害影响,显著改善热加工性能,实验指出:在含有 0.14%铅的 H70 中加入 0.22%锆,可获得良好的效果,此时,锆与铅的当量比约为1.5。铀也有类似于锆的作用。 含有铅铋等易熔杂质的黄铜,于冷加工后,如果迅速加热到再结晶温度以上进行退火,可能突然暴烈,这种现象称为 “火裂”。黄铜的纯度愈高、晶粒愈细、铅的分布愈弥散,就愈不易出现“火裂”现象。避免“火裂”的有效方法是退火时缓慢加热。 锑: 随着温度的降低,锑在α 黄铜中的溶解度急剧减少(见图1-2-31),甚至锑含量小于 0.1%时就会析出脆性化合物 Cu2Sb,它呈现网状分布在晶界上,严重损害黄铜的冷加工性能。锑还促使黄铜产生热脆性,所以锑是黄铜中有害杂质。 加入微量锂可以减少锑对黄铜塑性的有害影响,因锂与锑能形成高熔点(1145°C)的 Li3Sb 质点,比较均匀的分布在晶粒内部,从而减轻了危害性。淬火液可以提高含锑黄铜的冷加工塑性。 磷: 很少固熔于铜-锌合金,在α 黄铜中超过 0.05%-0.06%磷,就出现脆性相 Cu3P,降低黄铜塑性。磷显著提高冷加工黄铜的再结晶温度,在退火时容易产生晶粒大小不均现象,但是少量的磷可以使黄铜晶粒细化,提高黄铜的机械性能。 砷:室温时,砷在黄铜中的溶解度20%时看起来雪白银亮。Ni 显著地提高Cu 的机械性能、抗蚀性、电阻和热电势。 5.1 白铜的性能、用途与分类 5.1.1 性能与用途 (1)白铜的突出优点:耐蚀性好(用白铜做的器具不容易生铜绿,银光闪闪)。常常用来制造耐蚀结构件、精密仪器和装饰品。 (2)具有中等以上的强度、弹性好,易于冷热压力加工、易于焊接。制造弹簧,接插件。 (3)具有极高的电阻、热电势和非常小的电阻温度系数,用于做热电偶补偿导线、精密电阻和热电偶。 5.1.2 分类: 从用途分白铜分为: 耐蚀用:白铜、Zn 白铜、Al 白铜 电工用:白铜、Mn 自铜 从成份分: 简单白铜:B10、B20、B30 复杂白铜: Zn 白铜(“德国银”) Fe 白铜 Mn 白铜 Al 白铜 5.1.3 Cu-Ni 相图分析与调幅分解 5.1.3.1 Cu-Ni 相图 28 (1)Cu-Ni 合金可形成无限互溶的固溶体但另外,Cu-Ni 相图还有另一个特点: (2)Cu-Ni 合金在322℃以下的温度范围内存在一个“亚稳分解”(又称调幅分解)的宽的“成份——温度”区域。 5.1.3.2 调幅分解 定义:就是单相固溶体在某温度以下的温度范围内溶质原子自发地发生上坡扩散,由均匀的固溶体出现成份调幅的结构,即分解为两混合物,这就称为调幅分解。 如Cu-Ni 二元相图在322℃以下的T范围: α α 1+α 2 特点:①α 1、α 2和α 的晶格类型相同(f.c.c)但成份各异 ②在调幅分解中溶质的富区与贫区之间没有清晰的相界面 ③富区的生长是上坡扩散的过程 ④α 1、α 2是弥散、均匀、细致的混和物 意义:①亚稳分解的组织可使合金具有很高的强度,同时又有很好的塑性,亚稳分解是制取高强度,高塑性合金的重要途径之一。 ②在Cu-Ni 二元合金中分别加入某些合金元素可改变调幅分解的成份— 温度区的大小位置,从而改善合金性能。 白铜的典型用途 29 铜与铜合金牌号总结 30 铜的种类与区分 有很多人都认为.铜.就是只有一种.它就是唯一.但其实还有其他不同种类的铜的.比如合金铜.下面就慢慢的介绍吧. 一、纯铜 纯铜是玫瑰红色金属,表面形成氧化铜膜后呈紫色,故工业纯铜常称紫铜或电解铜。密度为8~9g/cm?,熔点1083℃.纯铜导电性很好,大量用于制造电线、电缆、电刷等;导热性好,常用来制造须防磁性干扰的磁学仪器、仪表,如罗盘、航空仪表等;塑性极好,易于热压和冷力加工,可制成管、棒、线、条、带、板、箔、等铜材。纯铜产品有冶炼品及加工品两种。 二、铜合金 1.黄铜 黄铜是铜及锌的合金。最简单的黄铜是铜、锌二元合金,称为简单黄铜或普通黄铜。改变黄铜中锌的含量可以得到不同机械性能的黄铜。黄铜中锌的含量越高,其强度也较高,塑性较低。工业中采用的黄铜含锌量不超过45%,含锌量再高将会产生脆性,是合金性能变坏。为了改善黄铜的某种性能,在一元黄铜的基础上加入其他合金元素的黄铜称为特殊黄铜。常用的合金元素有硅、铝、锡、铅、锰、铁与镍等。在黄铜中加铝能提高黄铜的屈服强度和抗腐蚀性,稍降低塑性。含铝小于4%的黄铜具有良好的加工、铸造等综合性能。在黄铜中加入1%的锡能显着改善黄铜的抗海水和海洋大气腐蚀的能力,因此成为―海军黄铜‖。锡还能改善黄铜的切削加工性能。黄铜加铅的主要目的是改善切削加工性和提高耐磨性,铅对黄铜的强度影响不大。锰黄铜具有良好的机械性能、热稳定性和抗蚀性;在锰黄铜中加铝,还可以改善它的性能,得 31 到表面光洁的铸件。黄铜可分为铸造和压力加工两类产品。 2.青铜 青铜是历史上应用最早的一种合金,原指铜锡合金,因颜色呈青灰色,故称青铜。为了改善合金的工艺性能和机械性能,大部分青铜内还加入其他合金元素,如铅、锌、磷等。由于锡是一种稀缺元素,所以工业上还是用许多不含锡的无锡青铜,他们不仅价格便宜,还具有所需要的特殊性能。无锡青铜主要有铝青铜、铍青铜、锰青铜、硅青铜等。此外还有成分较为复杂的三元或四元青铜。现在出黄铜和白铜(铜镍合金)以外的铜合金均称为青铜。锡青铜有较高的机械性能,较好的耐蚀性、减摩性和好的铸造性能;对过热和气体的敏感性小,焊接性能好,无铁磁性,收缩系数小。锡青铜在大气、海水、淡水和蒸汽中的抗蚀性都比黄铜高。铝青铜有比锡青铜高的机械性能和耐磨、耐蚀、耐寒、耐热、无铁磁性,有良好的流动性,无偏析倾向,可得到致密的铸件。在铝青铜中加入铁、镍和锰等元素,可进一步改善合金的各种性能。青铜也分为压力加工和铸造产品两大类。 3.白铜 以镍为主要添加元素的铜基合金呈银白色,称为白铜。铜镍二元合金称普通白铜,加锰、铁、锌和铝等元素的铜镍合金称为复杂白铜,纯铜加镍能显着提高强度、耐蚀性、电阻和热电性。工业用白铜根据性能特点和用途不同分为结构用白铜和电工用白铜两种,分别满足各种耐蚀和特殊的电、热性能。 4.铜材 以纯铜或铜合金制成各种形状包括棒、线、板、带、条、管、箔等统称铜材。铜材的加工有轧制、挤制及拉制等方法,铜材中板材和条材有热轧的和冷轧的;而带材和箔材都是冷轧的;管材和棒材则分为挤制品和拉制品;线材都是拉制品。 铜的分类 32 黄铜 以锌作主要添加元素的铜合金,具有美观的黄色,统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成,具有良好的冷加工性能,如含锌30%的黄铜常用来制作弹壳,俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成,其中最常用的是含锌40%的黄铜。为了改善普通黄铜的性能,常添加其他元素,如铝、镍、锰、锡、硅、铅等。铝能提高黄铜的强度、硬度和耐蚀性,但使塑性降低,适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性,故称海军黄铜,用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能;这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 青铜 原指铜锡合金,后除黄铜、白铜以外的铜合金均称青铜,并常在青铜名字前冠以第一主要添加元素的名。本内容,并不能满足学生的需要,通过补充,达到内容的完善

文稿提供者:绿兴金属有限公司返回搜狐,查看更多



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有