程序性坏死在骨关节炎病理机制和治疗中的作用 您所在的位置:网站首页 骨关节炎的发病机制 程序性坏死在骨关节炎病理机制和治疗中的作用

程序性坏死在骨关节炎病理机制和治疗中的作用

2024-06-01 05:47| 来源: 网络整理| 查看: 265

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022 Apr; 51(2): 261–265. Chinese. doi: 10.3724/zdxbyxb-2021-0402PMCID: PMC9353631PMID: 36161294

Language: Chinese | English

程序性坏死在骨关节炎病理机制和治疗中的作用Necroptosis in pathogenesis of osteoarthritis and its therapeutic implicationsZhichao LIU, Zhouyang QIAN, Yingnan WANG, and Huiming WANGAuthor information Article notes Copyright and License information PMC Disclaimer 浙江大学医学院附属口腔医院 浙江大学口腔医学院 浙江省口腔疾病临床医学研究中心 浙江省口腔生物医学研究重点实验室 浙江大学癌症研究院,浙江 杭州 310006 第一作者:刘志超,医师,主要从事程序性坏死相关研究;E-mail:[email protected];https://orcid.org/0000-0003-1840-1403WANG Yingnan, E-mail: [email protected], https://orcid.org/0000-0002-9826-9061; WANG Huiming, E-mail: [email protected], https://orcid.org/0000-0002-1131-7455Received 2021 Dec 27; Accepted 2022 Feb 15.PMC Copyright notice Abstract

骨关节炎是一种由多种病因引起的进行性关节疾病,其发病机制尚未明确,目前临床上尚未有根治性的治疗方法。程序性坏死是一种新的细胞程序性死亡方式,是一种高度促炎症的细胞死亡模式。近年研究结果显示,程序性坏死相关因子与骨关节炎的进展密不可分,如损伤相关分子模式促进各类炎症因子的释放,从而募集巨噬细胞,促进骨关节局部炎症;抑制受体相互作用蛋白激酶可减少关节细胞死亡及炎症因子表达,从而减少软骨破坏。本文综述了骨关节炎中程序性坏死的调控机制,以期进一步揭示骨关节炎的发病机制,为骨关节炎的治疗提供潜在作用靶点。

Abstract

Osteoarthritis is a progressive degenerative joint disease induced by many causes, for which there is no radical cure currently. Necroptosis is a newly reported programmed cell death, and its related factors are also inseparable from the progress of osteoarthritis. For examples, damage-associated molecular pattern promotes the release of various inflammatory factors, so as to recruit macrophages and promote local inflammation of the joint; inhibition of receptor-interacting protein kinase can reduce the death of cell and the expression of inflammatory factors, so as to reduce cartilage damage. Therefore, in-depth study of the regulatory mechanism of necroptosis in osteoarthritis will help to further reveal the pathogenesis of osteoarthritis, so as to provide potential targets for the treatment of osteoarthritis.

Keywords: Necroptosis, Osteoarthritis, Receptor-interacting protein kinase, Damage-associated molecular pattern, Inflammation, Review

肿瘤坏死因子(tumor necrosis factor,TNF);受体相互作用蛋白激酶(receptor-interacting protein kinase,RIPK);混合系激酶区域样蛋白(mixed lineage kinase domain-like,MLKL);损伤相关分子模式(damage-associated molecular pattern,DAMP);白介素(interleukin,IL);基质金属蛋白酶(matrix metalloproteinase,MMP);

骨关节炎是一种由多种病因引起的进行性退行性关节疾病 [1] ,其临床特征主要是关节疼痛、僵硬、肿胀以及不同程度的炎症 [2] ,目前发病机制尚不明确,治疗以缓解症状为主,尚无法干预疾病进展 [3] 。

多项研究证明,程序性坏死及其通路的相关因子在神经变性、炎症性疾病、癌症及肾损伤等各种病理过程中发挥着重要作用 [4] 。程序性坏死主要由TNF-α启动,通过RIPK1和RIPK3作用于MLKL传递细胞死亡信号。程序性坏死发生后,细胞膜破裂,大量DAMP进入周围组织,可以引发周围组织的反应,进而破坏组织环境稳态 [5] 。

程序性坏死是一种高度促炎的细胞死亡模式 [6] ,其相关因子也与促炎作用密不可分。如RIPK可以参与炎症小体和细胞因子的激活 [ 7- 9] ;在TNF诱导的程序性坏死过程中,MLKL是活性氧产生所必需的,而活性氧可以促进炎症因子的释放 [ 10- 13] 。此外,程序性坏死促进细胞内DAMP如IL-1家族成员IL-1α、IL-1β、IL-18等的释放,以促进炎症发展 [14] 。程序性坏死的促炎机制见 图1。

Open in a separate window 图 1

程序性坏死的促炎机制肿瘤坏死因子(TNF)-α与细胞膜表面的TNF受体结合后,TNF受体相关死亡结构域(TRADD)、头帕肿瘤综合征蛋白(CYLD)、TNF受体相关因子(TRAF)2、细胞凋亡抑制蛋白(cIAP)1以及受体相互作用蛋白激酶(RIPK)1形成复合体Ⅰ;RIPK1与RIPK3相互作用形成复合体Ⅱ,进而介导程序性坏死. RIPK可以参与炎症小体和细胞因子的激活,从而产生促炎作用;混合系激酶区域样蛋白(MLKL)是一种激酶样蛋白,是RIPK的下游调控物质,在TNF诱导的坏死过程中,MLKL是活性氧产生所必需的,而活性氧可以促进炎症因子的释放;损伤相关分子模式(DAMP)通常在程序性坏死过程中释放,可以促进炎症发生.

本文主要阐述了程序性坏死及其相关因子在骨关节炎(包括膝骨关节炎、髋关节炎及颞下颌关节骨关节炎等)中的研究进展,探讨骨关节炎发生的潜在机制及治疗的潜在作用靶点。

DAMP通常在程序性坏死过程中释放,在骨关节炎中发挥重要作用。DAMP来源主要有三类:细胞外基质衍生的损伤相关分子模式、血浆蛋白损伤相关分子模式、细胞内警报素 [ 15- 17] 。关节间隙中增加的DAMP以自分泌或旁分泌方式发挥作用,释放IL-1β、IL-6、TNF-α、MMP等炎症因子 [18] 。IL-6、IL-8和IL-1β等的释放使细胞外警报素增加,将巨噬细胞募集到局部区域,从而促进炎症发生;MMP的增加及活化的巨噬细胞导致软骨基质损伤以及软骨细胞凋亡 [ 15- 19] 。软骨细胞凋亡导致高速泳动族蛋白B1分泌,高速泳动族蛋白B1通过晚期糖基化终末产物受体和Toll样受体激活细胞并增加炎症因子的分泌 [20] 。研究证明,颞下颌关节骨关节炎大鼠退变髁突软骨中高迁移率族蛋白B1、TNF-α和MMP13等蛋白表达增加,提示髁突软骨退变进程中,软骨细胞程序性坏死发生后细胞破裂所释放的DAMP水平上升,这些DAMP可能作用于周围正常的软骨细胞,刺激IL-6等炎症因子的分泌,从而诱发软骨进一步退变 [21] 。同时也有研究证明,不同关节炎的机制不同,如膝骨关节炎患者和髋关节炎患者中的DAMP具有显著性差异, 膝骨关节炎中高速泳动族蛋白B1、晚期糖基化终末产物受体、S100A8和S100A9蛋白及其基因表达显著增加 [22] ,这表明膝骨关节炎和髋关节炎的潜在分子发病机制可能涉及不同的分子及下游信号。

除了DAMP外,RIPK在各类骨关节炎中的作用也不容忽略。Armaka等 [23] 提出RIPK3是间充质特异性κB抑制因子激酶2缺失小鼠滑膜炎所必需的。Jeon等 [24] 在实验性骨关节炎小鼠模型中发现,骨关节炎受损软骨中RIPK3的表达明显高于未受损软骨。Riegger等 [25] 通过实时聚合酶链反应和免疫组织化学法在高度退化以及完整的软骨组织中确定了细胞凋亡和程序性坏死相关标志物RIPK3,发现 RIPK3和 MLKL在高度退化的软骨组织中表达增加(分别增加至4.2和2.7倍);外伤和/或化学诱导的细胞死亡及伴随而来的炎症因子的释放在很大程度上可以被RIPK1抑制剂Nec-1减弱。Zhao等 [26] 研究大骨节病患者软骨细胞的分布和死亡情况时发现,大骨节病患者的样本中间区TUNEL阳性和RIPK3阳性软骨细胞的比例较高,说明坏死是大骨节病患者软骨中间区细胞死亡的机制。RIPK1在骨关节炎患者和实验性骨关节炎大鼠模型的软骨中表达显著上调;大鼠关节内RIPK1过表达可诱导骨关节炎,说明RIPK1在骨关节炎发病中发挥关键作用 [27] 。颞下颌关节骨关节炎中程序性坏死由氧化应激介导,在骨关节炎中起重要作用;TNF和RIPK1/RIPK3介导的程序性坏死加剧了软骨破坏;当细胞凋亡受到抑制时,程序性坏死途径增强 [28] 。何峰等 [21] 研究证明,髁突软骨退变时程序性坏死的关键分子RIPK3阳性细胞率和蛋白表达量均显著增加,且表达水平与软骨退变程度相关,提示程序性坏死参与了髁突软骨的退变进程。

综上,鉴于DAMP和RIPK在骨关节炎中的这些作用,我们认为程序性坏死在骨关节炎的发生发展中具有重要作用。

基于程序性坏死及其相关因子在骨关节炎发生发展中的重要作用,针对程序性坏死相关因子的靶向防控或可成为治疗骨关节炎的有效方式。

软骨破坏是骨关节炎的一个关键特征,但目前的治疗方案仅限于缓解症状 [ 29- 30] 。在骨关节炎治疗的研究中,可以针对关节炎中程序性坏死相关因子如DAMP、RIPK等进行探索性治疗。Dominguez等 [31] 证实了胱天蛋白酶(caspase)-8/RIPK3信号轴在关节炎发病机制中的关键作用,caspase-8在滑膜抗原提呈细胞中发挥作用,通过控制RIPK3的作用来调节对炎症刺激的反应,但具体机制仍需进一步研究。多项研究证明,Nec-1是一种有效的RIPK1活性抑制剂 [ 32- 33] 。Nec-1可以减少佐剂性关节炎大鼠的关节软骨损伤和坏死性炎症,显著降低程序性坏死相关因子的表达,并抑制小鼠模型中IL-17、IL-1β、IL-6和TNF-α等炎症因子的表达 [34] ,这可能可以为骨关节炎提供潜在的治疗策略。坏死性凋亡小分子抑制剂Necrostatin-1s(NST-1s)是受体相互作用蛋白激酶的选择性别构抑制剂 [24] 。NST-1s降低了RIPK1、RIPK3和MLKL等程序性坏死相关因子的表达 [35] ;降低了实验性自身免疫性关节炎的进展和炎症因子的滑膜表达,提示NST-1s可能可以通过抑制程序性坏死介质的表达,降低炎症因子的分泌,从而延缓关节炎的进展 [36] 。

颞下颌关节骨关节炎是最难治疗的骨关节炎之一,而近年来该病的发病率逐渐升高,是口腔临床研究的热点。颞下颌关节骨关节炎的主要病理学特征包括软骨细胞死亡、细胞外基质降解和软骨下骨重塑,但确切发病机制和过程仍有待进一步研究 [ 37- 38] 。Zhang等 [35] 实验证明,下颌软骨细胞中RIPK1、RIPK3和caspase-8的表达在4 d的压缩机械力后显著增加,Nec-1对坏死性凋亡的抑制恢复了机械力介导的下颌软骨变薄和软骨细胞死亡。这意味介导程序性坏死和细胞凋亡的主蛋白RIPK是颞下颌关节骨关节炎的潜在治疗靶点。其中,RIPK1在RIPK3和MLKL的上游起作用,这可能是临床治疗骨关节炎更有效的作用靶点。

迄今,我们对骨关节炎发生发展的详细分子机制仍知之甚少,且没有可用的干预措施来恢复退化的软骨或有效终止疾病进展。明确软骨维持和破坏的分子机制可能会产生新的骨关节炎治疗策略。现已明确程序性坏死及其相关因子在骨关节炎中扮演了较为重要的角色,如DAMP可破坏骨关节的环境稳态,促进炎症发展;Nec-1可减少炎症因子的表达。但骨关节炎中程序性坏死的诱导、调节及抑制等方面的许多具体机制尚不明确。因此,深入研究骨关节炎中程序性坏死的调控机制将有助于进一步揭示骨关节炎的发病机制,为骨关节炎的治疗提供新的潜在作用靶点。

Funding Statement

浙江省医药卫生科技计划(2021418901);中央高校基本科研业务费专项资金(2020FZZX008-06)

COMPETING INTERESTS

所有作者均声明不存在利益冲突

References1. TURKIEWICZ A, PETERSSON I F, BJÖRK J, et al. Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032[J] Osteoarthr Cartilage. . 2014;22(11):1826–1832. doi: 10.1016/j.joca.2014.07.015. [PubMed] [CrossRef] [Google Scholar]2. KOLASINSKI S L, NEOGI T, HOCHBERG M C, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee[J] Arthritis Care Res. . 2020;72(2):149–162. doi: 10.1002/acr.24131. [PubMed] [CrossRef] [Google Scholar]3. CHEN D, SHEN J, ZHAO W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J] Bone Res. . 2017;5(1):16044. doi: 10.1038/boneres.2016.44. [PMC free article] [PubMed] [CrossRef] [Google Scholar]4. GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J] Cell Death Differ. . 2018;25(3):486–541. doi: 10.1038/s41418-017-0012-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]5. CHEN J, WANG S, FU R, et al. RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice[J] J Transl Med. . 2018;16(1):233. doi: 10.1186/s12967-018-1606-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]6. KEARNEY C J, CULLEN S P, TYNAN G A, et al. Necroptosis suppresses inflammation via termination of TNF-or LPS-induced cytokine and chemokine production[J] Cell Death Differ. . 2015;22(8):1313–1327. doi: 10.1038/cdd.2014.222. [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. MAN S M, KANNEGANTI T D. Regulation of inflammasome activation[J] Immunol Rev. . 2015;265(1):6–21. doi: 10.1111/imr.12296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. VINCE J E, WONG W W L, GENTLE I, et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation[J] Immunity. . 2012;36(2):215–227. doi: 10.1016/j.immuni.2012.01.012. [PubMed] [CrossRef] [Google Scholar]9. KELLIHER M A, GRIMM S, ISHIDA Y, et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal[J] Immunity. . 1998;8(3):297–303. doi: 10.1016/S1074-7613(00)80535-X. [PubMed] [CrossRef] [Google Scholar]10. TANZER M C, MATTI I, HILDEBRAND J M, et al. Evolutionary divergence of the necroptosis effector MLKL[J] Cell Death Differ. . 2016;23(7):1185–1197. doi: 10.1038/cdd.2015.169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. PETRIE E J, SANDOW J J, JACOBSEN A V, et al. Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis[J] Nat Commun. . 2018;9(1):2422. doi: 10.1038/s41467-018-04714-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. MING L, JIN F, HUANG P, et al. Licochalcone A up-regulates of FasL in mesenchymal stem cells to strengthen bone formation and increase bone mass[J] Sci Rep. . 2015;4(1):7209. doi: 10.1038/srep07209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]13. KAMATA H, HONDA S I, MAEDA S, et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J] Cell. . 2005;120(5):649–661. doi: 10.1016/j.cell.2004.12.041. [PubMed] [CrossRef] [Google Scholar]14. KACZMAREK A, VANDENABEELE P, KRYSKO D V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance[J] Immunity. . 2013;38(2):209–223. doi: 10.1016/j.immuni.2013.02.003. [PubMed] [CrossRef] [Google Scholar]15. MIDWOOD K, SACRE S, PICCININI A M, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease[J] Nat Med. . 2009;15(7):774–780. doi: 10.1038/nm.1987. [PubMed] [CrossRef] [Google Scholar]16. EVANS C H, MEARS D C, MCKNIGHT J L. A preliminary ferrographic survey of the wear particles in human synovial fluid[J] Arthritis Rheumatism. . 1981;24(7):912–918. doi: 10.1002/art.1780240708. [PubMed] [CrossRef] [Google Scholar]17. SOHN D H, SOKOLOVE J, SHARPE O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4[J] Arthritis Res Ther. . 2012;14(1):R7. doi: 10.1186/ar3555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]18. SOKOLOVE J, LEPUS C M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations[J] Ther Adv Musculoskelet Dis. . 2013;5(2):77–94. doi: 10.1177/1759720X12467868. [PMC free article] [PubMed] [CrossRef] [Google Scholar]19. RASHEED Z, AKHTAR N, HAQQI T M. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor- B in human osteoarthritis chondrocytes[J] Rheumatology. . 2011;50(5):838–851. doi: 10.1093/rheumatology/keq380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. SUN X H, LIU Y, HAN Y, et al. Expression and significance of high-mobility group protein B1 (HMGB1) and the receptor for advanced glycation end-product (RAGE) in knee osteoarthritis[J] Med Sci Monit. . 2016;22:2105–2112. doi: 10.12659/MSM.895689. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. 何 峰, 叶 涛, 马原军, 等. 程序性坏死在髁突软骨退变中的作用[J]. 实用口腔医学杂志, 2021, 37(1): 35-39 [PubMed]HE Feng, YE Tao, MA Yuanjun, et al. The effects of necroptosis on the development of condylar cartilage degeneration[J]. Journal of Practical Stomatology, 2021, 37(1): 35-39. (in Chinese) 22. ROSENBERG J H, RAI V, DILISIO M F, et al. Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint[J] Mol Cell Biochem. . 2017;436(1-2):59–69. doi: 10.1007/s11010-017-3078-x. [PubMed] [CrossRef] [Google Scholar]23. ARMAKA M, OSPELT C, PASPARAKIS M, et al. The p55TNFR-IKK2-RIPK3 axis orchestrates arthritis by regulating death and inflammatory pathways in synovial fibroblasts[J] Nat Commun. . 2018;9(1):618. doi: 10.1038/s41467-018-02935-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. JEON J, NOH H J, LEE H, et al. TRIM24-RIP3 axis perturbation accelerates osteoarthritis pathogenesis[J] Ann Rheum Dis. . 2020;79(12):1635–1643. doi: 10.1136/annrheumdis-2020-217904. [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. RIEGGER J, BRENNER R E. Evidence of necroptosis in osteoarthritic disease: investigation of blunt mechanical impact as possible trigger in regulated necrosis[J] Cell Death Dis. . 2019;10(10):683. doi: 10.1038/s41419-019-1930-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. ZHAO J, JITKAEW S, CAI Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis[J] Proc Natl Acad Sci U S A. . 2012;109(14):5322–5327. doi: 10.1073/pnas.1200012109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]27. CHENG J, DUAN X, FU X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7[J] Front Cell Dev Biol. . 2021;9:638382. doi: 10.3389/fcell.2021.638382. [PMC free article] [PubMed] [CrossRef] [Google Scholar]28. LI B, GUAN G, MEI L, et al. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint[J] J Cell Mol Med. . 2021;25(11):4902–4911. doi: 10.1111/jcmm.16514. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. GOLDRING M B. Articular cartilage degradation in osteoarthritis[J] HSS J. . 2012;8(1):7–9. doi: 10.1007/s11420-011-9250-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]30. LATOURTE A, KLOPPENBURG M, RICHETTE P. Emerging pharmaceutical therapies for osteoarthritis[J] Nat Rev Rheumatol. . 2020;16(12):673–688. doi: 10.1038/s41584-020-00518-6. [PubMed] [CrossRef] [Google Scholar]31. DOMINGUEZ S, MONTGOMERY A B, HAINES III G K, et al. The caspase-8/RIPK3 signaling axis in antigen presenting cells controls the inflammatory arthritic response[J] Arthritis Res Ther. . 2017;19(1):224. doi: 10.1186/s13075-017-1436-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]32. DEGTEREV A, HITOMI J, GERMSCHEID M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J] Nat Chem Biol. . 2008;4(5):313–321. doi: 10.1038/nchembio.83. [PMC free article] [PubMed] [CrossRef] [Google Scholar]33. CHRISTOFFERSON D E, YUAN J. Necroptosis as an alternative form of programmed cell death[J] Curr Opin Cell Biol. . 2010;22(2):263–268. doi: 10.1016/j.ceb.2009.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]34. CHEN Y, ZHU C J, ZHU F, et al. Necrostatin-1 ameliorates adjuvant arthritis rat articular chondrocyte injury via inhibiting ASIC1a-mediated necroptosis[J] Biochem Biophysl Res Commun. . 2018;504(4):843–850. doi: 10.1016/j.bbrc.2018.09.031. [PubMed] [CrossRef] [Google Scholar]35. ZHANG C, LIN S, LI T, et al. Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis[J] Osteoarthritis Cartilage. . 2017;25(8):1324–1334. doi: 10.1016/j.joca.2017.03.018. [PubMed] [CrossRef] [Google Scholar]36. JHUN J, LEE S H, KIM S Y, et al. RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis[J] J Transl Med. . 2019;17(1):84. doi: 10.1186/s12967-019-1809-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. CHEN J, KOS R, GARSSEN J, et al. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target[J] Cells. . 2019;8(12):1486. doi: 10.3390/cells8121486. [PMC free article] [PubMed] [CrossRef] [Google Scholar]38. ZHAO Y, XIE L. An update on mesenchymal stem cell-centered therapies in temporomandibular joint osteoarthritis[J] Stem Cells Int. . 2021;2021:1–15. doi: 10.1155/2021/6619527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有