超导钉扎效应的研究(力求一篇文章搞懂它) 您所在的位置:网站首页 超导钉扎悬浮 超导钉扎效应的研究(力求一篇文章搞懂它)

超导钉扎效应的研究(力求一篇文章搞懂它)

2024-07-12 23:58| 来源: 网络整理| 查看: 265

文章目录 磁畴理论特殊物质磁体的分类硬〈永〉磁体(磁性保持较长或永久时间)第一大类:第二大类 软磁体(较短时间内有磁性) 磁的来源

磁畴理论

磁畴(Magnetic Domain)理论是用量子理论从微观上说明铁磁质的磁化机理。所谓磁畴,是指磁性材料内部的一个个小区域,每个区域内部包含大量原子,这些原子的磁矩都象一个个小磁铁那样整齐排列,但相邻的不同区域之间原子磁矩排列的方向不同。

各个磁畴之间的交界面称为磁畴壁。宏观物体一般总是具有很多磁畴,这样,磁畴的磁矩方向各不相同,结果相互抵消,矢量和为零,整个物体的磁矩为零,它也就不能吸引其它磁性材料。也就是说磁性材料在正常情况下并不对外显示磁性。只有当磁性材料被磁化以后,它才能对外显示出磁性。

特殊物质

铁、钴、镍或铁氧体等铁磁类物质有所不同,它内部的电子自旋可以在小范围内自发地排列起来,形成一个自发磁化区,这种自发磁化区就叫磁畴。铁磁类物质磁化后,内部的磁畴整整齐齐、方向一致地排列起来,使磁性加强,就构成磁铁了。磁铁的吸铁过程就是对铁块的磁化过程,磁化了的铁块和磁铁不同极性间产生吸引力,铁块就牢牢地与磁铁“粘”在一起了。我们就说磁铁有磁性了。

磁体的分类 硬〈永〉磁体(磁性保持较长或永久时间) 第一大类:

金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、铝镍钴磁铁(AlNiCo)、钐钴磁铁(SmCo),包括: 1、钕铁硼磁铁:它是发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好。工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面涂层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 3. 钐钴(SmCo)依据成份的不同分为SmCo5和Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。

第二大类

铁氧体永磁材料(Ferrite),它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。

软磁体(较短时间内有磁性) 磁的来源

物质的磁性来自构成物质的原子,原子的磁性又主要来自原子中的电子。那么电子的磁性又是怎样的呢?从科学研究已经知道,原子中电子的磁性有两个来源。一个来源是电子本身具有自旋,因而能产生自旋磁性,称为自旋磁矩;另一个来源是原子中电子绕原子核作轨道运动时也能产生轨道磁性,称为轨道磁性。我们知道,物质是由原子组成的,而原子又是由原子核和位于原子核外的电子组成的。原子核好象太阳,而核外电子就仿佛是围绕太阳运转的行星。另外,电子除了绕着原子核公转以外,自己还有自转(叫做自旋),跟地球的情况差不多。一个原子就像一个小小的“太阳系”。另外,如果一个原子的核外电子数量多,那么电子会分层,每一层有不同数量的电子。第一层为1s,第二层有两个亚层2s和2p,第三层有三个亚层3s、3p和3d,依此类推。如果不分层,这么多的电子混乱地绕原子核公转,是不是要撞到一起呢? 在原子中,核外电子带有负电荷,是一种带电粒子。电子的自转会使电子本身具有磁性,成为一个小小的磁 体,具有N极和S极。也就是说,电子就好像很多小小的磁体绕原子核在旋转。这种情况实际上类似于电流产生磁场的情况。 虽然电子的自转会使它成为小磁体,但是绝大多数的物质都没有有磁性,只有像铁、钴、镍这样的少数物质才具有磁性呢。他的原因就在于实际上原子中电子产生的磁矩分为三种情况:由于电子的自转方向总共有上下两种,且自转方向相反的电子产生的磁极能够相互抵消。1.在一些大多数物质中,具有向上自转和向下自转的电子数目一样多,它们产生的磁极完全互相抵消,整个原子,以至于整个物体对外没有磁性。2.自转方向不同的电子数目不同,虽然这些电子所产生磁矩不能相互抵消,导致整个原子具有一定的总磁矩。但是这些原子磁矩之间没有相互作用,它们是混乱排列的,所以整个物体没有强磁性。3.少数如铁、钴、镍的物质,它们的原子内部电子在不同自转方向上的数量不一样,这样,在自转相反的电子磁极互相抵消以后,还剩余一部分电子的磁矩没有被抵消。这样,整个原子具有总的磁矩。同时,由于一种被称为“交换作用”的机理,这些原子磁矩之间被整齐地排列起来,整个物体也就有了磁性。当剩余的电子数量不同时,物体显示的磁性强弱也不同。例如,铁的原子中没有被抵消的电子磁极数最多,原子的总剩余磁性最强。而镍原子中自转没有被抵消的电子数量很少,所以它的磁性比较弱。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有