simoncos对《惊人的假说》的笔记(1) 您所在的位置:网站首页 说一些模棱两可的话是什么效应 simoncos对《惊人的假说》的笔记(1)

simoncos对《惊人的假说》的笔记(1)

2023-07-24 08:05| 来源: 网络整理| 查看: 265

惊人的假说(新版 第一推动丛书·生命系列)

【英】弗朗西斯·克里克

前言

2018-12-12 20:35:57

我尽量避免对事实的曲解,由于大自然的极端多样性,在生物学中做到这一点不太容易。同样我也不能完全避免观点上的曲解。意识问题是一个远未取得一致意见的研究课题。没有一些最初的偏见我们不可能得到什么结果。读者将会明白,此刻我并不热衷于功能主义和行为主义的观点,也不倾向于数学家、物理学家或哲学家的论调。也许我明天就会发现此时思考问题的错误,但今日我仍尽力而为。

第一章 引言

2018-12-14 09:31:40

胚胎学(目前经常被称为发育生物学)是当前研究的重点。一个海胆的受精卵经过多次分裂,最终会变成一个成熟的海胆。但是,如果把受精卵第一次分裂后的两个子细胞分开,那么每个子细胞就会各自发育成一个独立的、但却更小的海胆。类似的实验也可以在蛙卵上完成。经过分子自身的重新组织,从本来应该产生一个动物的物质中产生出两个小动物。

注:同步机制?

2018-12-14 09:32:48

大多数科学家确实认为灵魂是神话。这并非是由于他们能证明灵魂这一概念是虚假的,而是他们目前并不需要这一假设。

2018-12-14 09:36:43

我们需要使用更鲜明的术语来表述我们的想法。科学的信念就是,我们的精神(大脑的行为)可以通过神经细胞(和其他细胞)及其相关分子的行为加以解释

2018-12-14 09:36:55

为什么惊人的假说如此令人吃惊呢?我认为主要有三个原因。首先是许多人还不愿意接受被称作“还原论”的研究方法,即复杂系统可以通过它各个部分的行为及其相互作用加以解释。对于一个具有多种活动层次的系统,这一还原过程将不止一次地加以重复。也就是说,某一特定部分的行为可能需要用它的各个组成部分及其相互作用的特性加以解释。例如,为了理解大脑,我们需要知道神经细胞的各种相互作用,而且每个细胞的行为又需要用组成它的离子和分子的行为来解释。

这种过程在哪里终止呢?幸运的是,存在一个自然的中断点。这发生在(化学)原子的水平。每个原子有一个携带正电荷的重原子核,它被一个有组织的电子云所包围。这些电子既轻又灵活,而且携带负电荷。每个原子的化学性质几乎完全由核电荷确定。核的其他性质,如质量数及偶极矩、四极矩强度等次级电学性质,在大体上说来,原子核的质量数和电荷数不会发生变化,至少在生命赖以生存的温度和环境中如此。在此情况下,原子核的亚结构知识对研究化学是不必要的。原子核由各种质子和中子组成与质子和中子由夸克组成没有区别。为了解释大多数化学事实,所有的化学家都需要知道原子的核电荷数。为此,我们需要懂得一种料想不到的力学类型——量子力学,它控制微小粒子特别是电子的行为。实际上,由于计算很快就变得极端复杂,因此,人们主要是应用各种粗略的“拇指规则”(rules-of-thumb),以便用量子力学术语进行合理的解释。在这一水平以下,我们无需去冒险。

2018-12-14 09:37:59

至今仍有许多人企图说明还原论是行不通的。他们通常先是采用相当正式的定义形式,进而说明这种类型的还原论是不真实的。他们忽略的一点是,还原论并非是用一组低层次上的、固定的思想去解释另一组高层次的、固定的思想。它并不是一种一成不变的过程,而是一个动态的相互作用过程。它随着知识的发展,不断修改两个层次已有的观念。

2018-12-14 09:38:39

另外一个有些人喜欢的哲学论点是“还原论”中包含了“分类错误”。例如:20世纪20年代他们说,把基因视为一种分子(现在我们应该说是配对分子中的一部分)是一种分类上的错误。基因是一回事,分子则是另外一回事。现在看来,这种反对意见是十分空洞的。分类对于我们来说并非是绝对的,只是人们的一种规定而已。

2018-12-14 09:39:28

即使得出结论说,我们不能解释红色的程度(因为你无法将你的红色感觉准确地告诉我),这也并不意味着,你我看到的红色是不同的。如果我们知道,你我大脑中的红色神经相关物严格相同,我们就可以作出科学推论,你我在观看红色时具有同样的感受。问题在于“严格”一词。我们能有的精确程度,取决于我们对该过程的详尽知识。如果红色的神经相关物主要依赖于我过去的经历,而你我的经历又大不相同,那么我们就不能推断出你我看到的红色完全相同。

2018-12-14 09:40:36

进化并非是一个彻底的设计者。确实,正如法国分子生物学家雅克布(Franccois Jacob)所说:“进化是一个修补匠。”[4]它主要通过一系列较小的步骤,根据从前已有的结构去构造。进化又是机会主义的。只要某一新装置可以工作,即使工作方式很奇特,进化也会采用它。这就意味着,最有可能被进化选上的,是那些较容易地叠加到已有结构上的改变和改进。它的最终设计不会很彻底,而是一群相互作用的小配件的零散累加。令人奇怪的是,这种系统比直接针对某项任务设计的机器往往工作得更好。

注:一般只发生小的修改

2018-12-14 09:41:41

突现(emergent)一词具有双重含义。首先它具有神秘的色彩。这就意味着,突现行为无论如何(哪怕在原理上)也不能理解为各个分离部分的组合行为。我发现很难说明这种想法指的是什么。突现的科学含义(或者说至少我是这样使用的)是指如下假设,即使整体行为不等同于每一部分的简单叠加,但这种行为至少在原理上可以根据每一部分的本性和行为外加这些部分之间如何相互作用的知识去理解。

2018-12-14 09:42:10

一个简单的例子就是基础化学中的有机化合物,比如苯。苯分子由对称地排列在一个环上的六个碳原子和环的外侧与每个碳原子相连的氢原子组成。除了质量之外,苯分子的其他特性并非都是十二个原子的简单叠加。然而,只要了解各部分的相互作用机制,其化学反应和光谱吸收等特性都可以计算出来。当然,这需要量子力学告诉我们如何去做。

第二章 意识的本质

2018-12-14 18:54:46

早在100年前,3个基本的观点就已经盛行:

1. 并非大脑的全部操作都与意识有关。

2. 意识涉及某种形式的记忆,可能是极短时的记忆。

3. 意识与注意有密切的关系。

2018-12-14 18:55:32

但不幸的是,在心理学研究中兴起了一场运动,它否定意识的应用价值,把它看成是一个纯心理学概念。这部分原因是由于涉及内省的实验不再是研究的主流,另一方面,人们希望通过研究行为,特别是动物的行为,使心理学研究更具科学性。因为,对实验者而言,行为实验具有确定的观察结果。这就是行为主义运动,它回避谈论精神事件。一切行为都必须用刺激和反应去解释

2018-12-14 18:57:54

约翰·沃森(John B. Watson)等人在第一次世界大战前发起的这场行为主义运动,在美国盛行一时。并且由于以斯金纳(B. F. Skinner)为代表的许多著名鼓吹者的影响,该运动在三四十年代达到顶峰。尽管在欧洲还存在以格式塔(Gestalt)为代表的心理学派,但至少在美国,直至50年代后期和60年代认知心理学成为受科学界尊重的学科之前,心理学家从不谈论精神事件。在此之后,才有可能去研究视觉意象[1],并且在原来用于描述数字计算机行为的概念基础之上,提出各种精神过程的心理学模型。即便如此,意识还是很少被人提及,也很少有人去尝试区分脑内的有意识和无意识活动。

2018-12-14 19:02:00

这三位认知理论家对意识的属性大致达成了三点共识。他们都同意并非大脑的全部活动都直接与意识有关,而且意识是一个主动的过程;他们都认为意识过程有注意和某种形式的短时记忆参与;他们大概也同意,意识中的信息既能够进入到长时情景记忆(long-term episodic memory)中,也能进入运动神经系统(motor system)的高层计划水平,以便控制随意运动。除此之外,他们的想法存在着这样那样的分歧。

2018-12-14 19:05:30

克里斯托弗和我认为,某些问题可以暂且放在一边或者只是无保留地陈述一遍,根本无需进一步讨论。因为,经验告诉我们,如果不是这样的话,很多宝贵的时间就会耗费在无休止的争论上。

1. 关于什么是意识,每个人都有一个粗略的想法。因此,最好先不要给它下精确的定义,因为过早下定义是危险的。在对这一问题有较深入的了解之前,任何正式的定义都有可能引起误解或过分的限制。

2. 详细争论什么是意识还为时过早,尽管这种探讨可能有助于理解意识的属性。当我们对某种事物的定义还含糊不清时,过多地考虑该事物的功能毕竟是令人奇怪的。众所周知,没有意识你就只能处理一些熟悉的日常情况,或者只能对新环境下非常有限的信息作出反应。

3. 某些种类的动物,特别是高等哺乳动物可能具有意识的某些(而不需要全部)重要特征。因此,用这些动物进行的适当的实验有助于揭示意识的内在机制。因此,语言系统(人类具有的那种类型)对意识来说不是本质的东西,也就是说,没有语言仍然可以具有意识的关键特征。当然,这并不是说语言对丰富意识没有重要作用。

2018-12-14 19:05:34

4. 在现阶段,争论某些低等动物如章鱼、果蝇或线虫等是否具有意识是无益的。因为意识可能与神经系统的复杂程度有关。当我们不论在原理上和细节上都清楚地了解了人类的意识时,这才是我们考虑非常低等动物的意识问题的时候。

出于同样原因,我们也不会提出,我们自身的神经系统的某些部分是否具有它们特殊的、孤立的意识这样的问题。如果你偏要说:“我的脊髓当然有意识,只不过是它没有告诉我而已。”那么,在现阶段,我不会花时间与你争论这一问题。

5. 意识具有多种形式,比如与看、思考、情绪、疼痛等相联系的意识形式。自我意识,即与自身有关的意识,可能是意识的一种特殊情况。按照我们的观点,姑且还是先将它放在一边为好。某些相当异常的状态,如催眠、白日梦、梦游等,由于它们没有能给实验带来好处的特殊特征,我们在此也不予考虑。

2018-12-14 19:05:59

我们怎样才能科学地研究意识呢?意识具有多种形式。正如我们已经解释过的,初始的科学探索通常把精力集中到看来最容易研究的形式。科赫和我之所以选择视觉意识而不是痛觉意识或自我感受等其他的什么形式,就是因为人类很大程度上依赖于视觉。而且,视觉意识具有特别生动和丰富的信息。此外,它的输入高度结构化,也易于控制。正是由于这些原因,许多实验工作已围绕它展开。

第三章 看(Seeing)

2018-12-16 10:30:13

尽管哺乳动物智力比较发达,但作为一类动物它们并没有特别的视觉系统。这可能是因为它们是从小型夜行动物进化而来的,而这些动物的视觉远不及嗅觉和听觉那么重要。而灵长类(猴、猿和人)则是例外。它们大多数具有高度进化的视觉,但和人类相似,其嗅觉也许是较差的。

2018-12-16 10:31:23

1. 你很容易被你的视觉系统所欺骗。

2. 我们眼睛提供的视觉信息可能是模棱两可的。

3. 看是一个建构过程。

2018-12-16 10:33:00

你很容易被你的视觉系统所欺骗。比如,许多人相信,他们可以同样清楚地看任何东西。正如同我通过窗户观察花园时,我的印象是面前的灌木和右方的树木一样清楚。如果我的眼睛在短时间保持不动,就很容易发现这种感觉是错误的。只有接近注视中心,我才能看到物体的细节,偏离注视中心视力就越来越模糊。而到了视野的最外围,我连辨别物体都有困难。在日常生活中,这一限制之所以显得不明显,就是由于我们很容易不断地移动眼睛,使我们产生了各处物体同样清晰的错觉。

2018-12-19 09:28:50

这个被称为内克(Necker)立方体的特殊图形有一个有趣的性质。如果较稳定地注视一会儿该图形,立方体就会发生翻转,仿佛观察角度发生了变化一样。再过一会,知觉又会转换到原来的那样。在这种情况下,这幅图像有两种同样可能的三维解释,大脑无法确定哪一个更可取。但值得注意的是,某一时刻只能有一种解释,并不是两者奇特的混合。

Necker Cube

2018-12-19 09:29:17

对视觉图像的不同解释是数学上称为“不适定问题”的例证。对任何一个不适定问题都有多种可能的解。在不附加任何信息的条件下,它们同样都是合理的。为了得到真实的解,即与那里真正的东西最接近的解(有时用其他检验去测量,如走过去摸一摸它),我们需要使用数学上的所谓“约束条件”。换句话说,视觉系统必须得到如何最好地解释输入信息的固有假设。

我们通常看东西时之所以并不存在不确定性,是由于大脑把由视觉景象的形状、颜色、运动等许多显著的特征所提供的信息组合在一起,并对所有这些不同视觉线索综合考虑后提出了最为合理的解释。

2018-12-19 09:30:05

我的第三个一般性评论认为,看是一个建构过程,即大脑并非是被动地记录进入眼睛的视觉信息。正如上面的例子所显示的那样,大脑主动地寻求对这些信息的解释。另一个突出的例子是“填充”过程。一种类型的填充现象与盲点有关。它的发生是由于联结眼和脑的视神经纤维需要从某点离开眼睛,因此,在视网膜的一个小区域内便没有光感受器。请你闭上或遮住一只眼睛并凝视正前方。垂直地举起一个手指,把它放在距鼻尖约一英尺处,使指尖和眼睛的中心差不多处于同一水平。在水平方向移动手指使它偏离凝视中心约15°。稍加搜索你就便会发现一个看不见你指尖的地方(一定凝视正前方)。你视野内的这一个小区域是盲区。

2018-12-19 09:30:42

尽管这里存在盲区,但在你的视野中似乎没有明显的洞。比如我前面讲过的,当我在家中从窗户看外面的草坪时,即使我闭上一只眼睛观看正前方,我也感觉不到在草坪中有洞。也许看起来令人吃惊的是,大脑试图用准确的推测填补上盲点处应该有的东西。大脑究竟如何作出这种推测,正是心理学家和神经科学家试图找到的东西。(我将在第四章较全面地讨论填充过程。)

2018-12-19 09:41:24

因此大脑不可能只是一群仅仅表示在什么地方具有什么光强类别的细胞集合。它必须产生一个较高层次上的符号描述,大概是一系列较高层次上的符号描述。正如我们所看到的那样,这不是一步到位的事情,因为它必须借助以往的经验找到视觉信号的最佳解释。因此,大脑需要建构的是外界视觉景象的多水平解释,通常按物体、事件及其含义进行解释。由于一个物体(比如面孔)通常是由各个部分(如眼、鼻、嘴等)组成的,而这些部分又是由其各个子部分组成,所以符号解释很可能发生在若干个层次上。

2018-12-19 09:59:25

当然,这些较高层次的解释已经隐含(implicit)在视网膜上的光模式之中。但仅仅如此是不够的。大脑还必须使这些解释更明晰(explicit)。一个物体的明晰表象是符号化的,无需进一步深入加工。隐含的表象已包含这些信息,但必须进行深入的加工使其明晰化。当屏幕上某处出现一个红点时,要使电视给出某种信号是一件很容易的事情,只要在电视机上加一个小装置就行了。但是,如果想要设计一种电视机,使它当看到屏幕上的任何地方出现女人面孔时就给出闪光,则需要更复杂的信息加工。这实在是太难了。以至于我们今天还不能制造出完成这种任务的复杂装置。

一旦某个事物以明晰的形式符号化以后,该信息就很容易成为通用的信息。它既可以用于进一步加工,又可以用于某个动作。用神经术语来说,“明晰”大概就是指神经细胞的发放必须能较为直接地表征这种信息。因此,要“看”景物,我们就需要它的明晰的、层次的符号化解释,这似乎是合理的。

注:神预言 -> 这里作者自己的注释:使用符号一词并非意味真正存在小矮人(homunculus)。它仅仅表明,神经元的发放与视觉世界的某些方面密切相关。这种符号是否应考虑为一个矢量(而不仅仅是标量)是一个棘手的问题,在此我将不予考虑。换句话说,单个符号是如何分布的?

第四章 视觉心理学

2018-12-19 19:24:48

格式塔学派试图对视觉系统共同的相互作用类型进行分类,并把它们称为知觉定律[1]。他们的组合定律包括接近性、相似性、良好的连续性和封闭性。下面让我们依次对它们进行讨论。

2018-12-19 19:25:37

接近律说明,我们倾向于将那些相互靠得很近且离其他相似物体较远的东西组合在一起。

注:越接近可能越相关

2018-12-19 19:28:02

格式塔的相似律是说,我们将那些明显具有共同特性(如颜色、运动、方向等)的事物组合在一起。如果你看见一只正在跑的猫,你就会把它身体的各个部分组合在一起。因为一般来讲,当猫跑时,它的各个部分会在一个方向上运动。同样原因,正在树丛中爬行的猫也会被识别出来。但是,如果它纹丝不动,我们就很难发现它。

2018-12-19 19:28:39

请看图8a所表示的一组八个奇形怪状的物体。中间两个与字母Y类似,另外六个为扭曲的箭头。而在图8b,你大概会看到一个被三个斜条遮挡的三维立方体框架。现在,那些奇形怪状的物体已成为上下两图的组成部分。第二个图形中更容易看成是立方体,因为它似乎是一个被斜条遮挡的单一物体。而第一个图形,由于缺少任何遮挡线索,因而更容易被看成是八个独立的物体。

你看到什么物体?

2018-12-19 19:29:24

封闭性在线画图形中表现得最为明显。如果一条线形成了封闭的或几乎封闭的图形,那么我们就倾向于把它看成是被一条线包围起来的图形表面,而不仅仅是一条线。

2018-12-19 19:29:36

格式塔学派还有一个被称为“简洁”(Prägnanz)的普遍原理,它可以近似地被译为“优良性”。它的基本思想就是视觉系统对输入的视觉信息作出最简单、最规则和具有对称性的解释。大脑如何判断哪个解释“最简单”呢?现代的观点认为,最好的解释往往只需要很少的信息(在技术意义上)进行描述,而坏的解释往往需要更多的信息。

2018-12-19 19:30:18

格式塔知觉定律不能看作是严格的定律,而只能算是一种实用的启发式研究。因此,它们可以作为视觉问题的合适的入门知识。真正哪些操作过程导致了这些“定律”的出现,这正是众多视觉心理学家试图发现的东西。

2018-12-19 19:30:35

正如格式塔学派已经认识到的那样,视觉中的一个重要操作就是图形背景分离。要识别的物体称为“图形”,其周围环境称为“背景”。这种分离也许并不总是轻而易举的事。

2018-12-19 19:33:03

请看图12。你很可能将它看成是具有均匀灰度的一些小正方形的组合体。现在,如果把它弄模糊(摘掉眼镜、半闭着眼睛或将它放到房内的远处),你就可能认出是林肯的面孔。图的细节(小正方形的边缘)干扰了识别过程。当视觉变得模糊时,这些细节就不那么显眼了。这时,尽管由于图像中只有较低的空间频率信息,因此图像仍然有些模糊,但是你却能认出他的面孔了。当然,一般说来,不论低空间频率或高空间频率对解释图像都有帮助。

不妨从远处去看这个图形。

2018-12-19 19:34:12

大脑使用哪些线索从二维图像中获得三维信息呢?一个线索就是由入射光的角度产生的物体阴影。

2018-12-19 19:34:15

另一个令人信服的线索是“从运动恢复结构”。这是说,如果一个静止物体的形状难以看清楚(经常是由于缺少某些三维形状线索),那么稍微转动一下该物体就容易识别了。

2018-12-20 19:28:33

让我们转向讨论深度信息的主要来源。它通常被称作“体视”,依赖于双眼观察同一物体时景物图像的微小差异。

2018-12-20 19:28:53

靠捕食为生的动物如猫、狗等,通常双眼都在前方。这样它们就可以利用体视抓捕猎物。而对于其他动物,如兔子,双眼长在头的两侧更有好处。这样,它们就可以在宽广的视野内发现天敌。但与人类相比,它们的体视能力很有限,因为它们双眼的视野重叠很少。

2018-12-20 19:29:57

运动情况又怎样呢?视觉系统对运动感兴趣的原因是明显的。当你看电影时,尽管银幕上看到的是一系列快速呈现的静止画面,而你却具有运动物体生动的印象。这种现象称为“表观运动”。在这种相当人为的情况下,视觉系统可能会出现失误。汽车或马车轮子的辐条有时看起来会向相反方向转动。一般说来,它发生的原因已很清楚。这大体上是由于大脑把一幅图像中的一根辐条与下一幅图像中离它最近的那根辐条联系起来引起的。由于轮子在不停地转动,被联系在一起的可能并不是同一根辐条,而是其他邻近的一根。由于所有的辐条看起来完全一样,大脑很可能把相邻两幅图像中两根不同的辐条联系在一起。如果联系在一起的两根辐条所在的位置完全相同(相对于汽车),则轮子看起来就会是静止不动的。如果转速稍微放慢一点,则轮子的辐条看起来就会向后转动。特别是旧式电影中,这种现象时有发生。当汽车减速时,辐条看起来就改变方向(相对于汽车的运动)。心理学家们已经做了大量实验,试图确定获得好的表观运动所需要的条件。

2018-12-20 19:38:08

另外一种运动效应是理发店标志牌错觉(barber's pole illusion)。因为圆柱上有螺旋条纹,当它绕长轴旋转时,条纹看起来不是在转动而是在顺其长轴方向运动,通常是向上运动。(这将在第十一章中作充分讨论。)因此,我们的运动知觉并不总是直接的。在这种情况下,你看到的并不是每个条纹的局域运动,而是大脑错误地把它想象为整个模式的全局运动。

2018-12-20 19:41:25

颜色知觉也并非像看起来那样直截了当。基本的观点认为它与眼内不同类型的光感受器有关。每种光感受器只对有限波长范围内的光起反应。重要的是我们应当意识到,单个光感受器的反应怎么会不依赖于输入光子的波长。一个光感受器可能捕获一个光子,也可能捕获不到。如果确实捕获到,则不管光子的波长如何,其效果会完全相同。但它响应的概率却依赖于波长。某些波长激活它的概率很大,某些波长则很小。比如,它可以经常对“红”光子起反应,却很少对“绿”光子有响应。

2018-12-20 19:42:18

要获得颜色信息,就需要不只一种具有不同波长响应曲线的光感受器。它们的响应曲线是部分重叠的。但是,一个具有同一波长的光子流,对不同的光感受器引起不同程度的兴奋。大脑利用这些不同兴奋的比例,确定落在视网膜上某点光的“颜色”。

2018-12-20 19:42:24

大家知道,大多数人具有三种视锥细胞(大致是短波、中波和长波锥细胞。它们常被称为蓝、绿、红视锥细胞)。但也有少数人缺少“红”视锥细胞,因此导致部分色盲。他们在分辨红绿交通信号时可能会碰到困难。

2018-12-20 19:44:27

为什么会这样呢?进入眼内的信息不仅取决于表面的反射特性(颜色),还与落到该表面的光的波长有关。因此,在阳光下和在烛光下,妇女们色彩缤纷的服装会有很大区别。因此,大脑主要感兴趣的不是反射率和照明光的组合,而是物体表面的颜色特性。大脑试图通过比较眼睛对视野中若干不同区域的响应来抽提出这种信息。要做到这一点,大脑利用了如下约束(假设),即在某一时刻,在该景物的各处,照明光的颜色是相同的。尽管在其他场合,它们可能是明显不同的。如果照明光是粉红色,它就使所有的东西程度不同地变为粉红色。因此,大脑就力图校正它。这就是为什么阳光下的红色纤维在人工照明下看起来依然是红色的原因。但是,正如我们知道的,它看上去并不完全相同,因为校正机制并非工作得尽善尽美。

2018-12-20 19:45:00

下面我们稍微提一下另外一些视觉恒常性。一个物体看上去总是大致相同的,即便我们没有直视它,使得它落在了视网膜上的不同部位也是如此。如果我们在不同的距离观察一个物体,物体的视网膜图像可能变大或变小或产生一定的旋转。然而,我们同样将它看做是同一物体。我们将这些恒常性视为理所当然的事情。但简单的视觉机器却无法做到这一点,除非它具备发育成熟的大脑所具有的完成该任务的固有装置。大脑到底如何完成这些任务,我们仍然不十分清楚。

2018-12-20 23:55:02

运动和颜色之间具有奇怪的相互关系。大脑的短程运动系统有些色盲,它主要观看黑白图像。利用演示很容易说明这一点。将仅有两种均匀亮度的颜色(比如红和绿)构成的运动模式投射到屏幕上。然后调节两种颜色的相对亮度,使它们对于观察者来说看起来具有相同的亮度。这一过程必须对每个人分别进行,因为你和我的色平衡点不会完全相同。这一平衡条件被称为“等亮度”。

现在,如果你在屏幕上观看一个绿色背景上的红色运动物体,而且两种颜色调整为等亮度,那么其运动速度就显得比实际情况慢得多,甚至可能停止运动(特别是当你注视屏幕的一侧时,情况更是如此)。这是因为你大脑中的黑白系统将屏幕看成是均匀灰色(因为两种颜色是等亮度的),所以短程运动系统几乎得不到运动信息。

第五章 注意和记忆

2018-12-21 00:05:36

视觉注意的一种形式就是眼动(经常辅助以头部运动)。由于在靠近凝视中心的地方我们看得较清楚,所以当我们双眼的视线正对着某个物体时,就会获得更多的信息。否则,如果不是直视物体,我们只能获得粗略的信息(至少有关形状的信息是如此)。

2018-12-21 00:08:16

波斯纳认为,注意的这种变化可能涉及以下三个连续的过程:

解除原有注意→移动注意点→实施注意

首先,系统需要从视野中正在注意的地方解除注意。然后必须把“注意”点转向新的位置,最后在新地点实施注意。另一个重要的问题就是一个人能否同时注意视野中两个分离的位置或物体?有证据表明,这是办不到的,尽管也许可以跟踪若干个运动的点[3]。但有确凿证据表明,注意可以在空间上进行精细聚焦或者在较大范围内扩展。比如:当你读一本书时,你主要注意的是单词而不是一个个分开的字母。而在校对时情况则不然,你必须仔细检查每一个字母和标点,否则小的差错就会被遗漏。对我个人来讲,校对是一件困难的事情。因为通常我的阅读速度很快,除非我集中注意,否则很难发现一些细小的印刷错误。

2018-12-21 00:08:51

粗略地讲,大家普遍同意的观点是,注意涉及一个瓶颈问题。其基本思想就是初级加工过程大体上是一个平行的过程,即许多不同的活动同时进行。然后,似乎有一个或多个阶段存在信息处理的瓶颈。一个时间只能处理一个(或少数几个)“对象”。它通过临时滤除来自非注意对象的信息而实现。然后,注意系统迅速转向下一个对象。因此,注意大体上是串行的(即,注意一个之后再注意另一个)而非高度并行的(正如系统同时注意很多事情时的情况)。稍后,我们将详细讨论并行和串行加工的重要区别。

2018-12-21 00:09:33

通常把视觉注意比喻为“探照灯”。在探照灯内部,信息以一种特殊的方式被处理。这样,我们就可以快速、精确地观察被注意物体,并使我们更容易记住它。在“探照灯”以外的信息,或者被处理得较少,或者处理方式有所不同,还可能根本不予处理。大脑的注意系统将假想的“探照灯”从视野的一个地方快速转移到另一个地方,就像我们移动眼睛一样,只不过这时移动的速度慢得多罢了。

探照灯比喻以最简单的方式向我们暗示,视觉系统注意的是视野中某个地方。许多间接证据表明,情况确实如此。另外一种观点认为,我们注意的并不是某个特别的地方而是特别的物体。在某些情况下,如果物体运动(眼睛仍保持不动),注意可以追踪该物体,而不是停留在一个地方不动[4]。在目前看来,在一定程度上两种形式的注意(对视觉物体的注意或对视觉位置的注意)可能同时出现。

2018-12-21 00:11:18

心理学家一般都严格区分前注意(preattentive)加工和注意(attentive)加工。在美国工作多年的匈牙利心理学家贝拉·朱尔兹已经给出了某些前注意加工的显著例证[5]。请看图20。左边两种“纹理”之间的边界可立刻看出来。现在让我们看看该图的右半部:初看时没有明显的纹理边界,但仔细观察就会发现,一个区域是由不同朝向的字母L组成,而另一个区域则由字母T组成。但这种差别并不能立刻跳出(pop-out)。要看到它需要集中注意(focal attention)。

这张图的纹理的均匀程度怎样?

2018-12-21 00:11:28

还有另一种研究跳出(或缺少跳出)的方法。在屏幕上呈现一个视觉图像并保持一段短暂的时间。在此情况下,刺激图像常由要求被试者检测的“目标”和其他稍微不同的物体(被称为“干扰项”)组成。比如,可能是大量的字母散布在图像上,除了一个字母是红色之外,其他的全部都是绿的。被试者的任务是一看到红色字母便立刻按下按钮。我们发现,被试者可以非常迅速地完成这一任务。更为重要的是,反应时间与只有少数几个绿色字母或者很多绿色字母无关。换句话说,不管那里有多少个干扰项,反应时间都一样。红色字母立刻跳出在眼前。

2018-12-21 09:23:05

安妮·特丽斯曼(Anne Treisman)是研究注意有影响的心理学家之一。1977年,她和两个同事合作,完成了一个著名的实验[6]。实验的要点是这样的。她首先证实了红色字母可以在绿色字母的背景上跳出。如果所有字母的颜色都相同,则单个字母T可以在字母S的背景中跳出。这意味着,对于颜色和形状两个方面,跳出都可以发生。然后,他们给被试者一个更为复杂的任务。一半是绿色字母T,另一半是红色字母S,此外,还有一个红色字母T。被试者的任务是找出红色字母T。这时,被试者既不能单找一个红色字母,也不能单找一个字母T;因为符合这两个条件的字母太多了。被试者必须寻找颜色(红)和形状(T)两者结合在一起的字母。而这种结合不能立刻跳出。要发现红色字母T需要一段时间,而且干扰项数目越多,所需时间越长。如果图案中有25个字母,发现单个红色字母T的时间要比仅有5个字母时长得多。

这种情况被看作是串行搜索机制的证据,即为了判断一个字母既为红色又是T形,注意系统在一个时刻只能看一个字母。

2018-12-21 09:23:33

注意从一处移到另一处需要多少时间呢?这是一件较为复杂的事情。似乎物体越“突出”(对注意系统有更大的影响),花费的时间也越短。这种情形是可能出现的。例如,若红色字母非常鲜艳,视觉系统就可以通过把“探照灯”扩展到较大范围,一次检测几个字母。这意味着只需较少的步数便能搜索完全部字母。因此,每个字母的处理时间就减少了。有人认为,一个时刻处理一个物体所需要的时间为60毫秒左右是有可能的。如果一个时刻处理两个物体,每步所需的时间仍为60毫秒,那么每个字母(一个时刻本来只能观察一个字母)现在的处理时间就只有30毫秒。而如果能够同时处理三个物体,那么每个字母的处理时间就是20毫秒。

2018-12-21 09:23:47

但还有更复杂的情况。也许被试者的大脑经过训练而变得较为聪明,从而只注意红色字母(并忽略绿色的字母)。这样就会有一半的字母被忽略。这就意味着,他可以在注意步速相同的情况下更快地完成搜索任务。在这种情况下,120毫秒的步速就可以得到同样的观察结果。

2018-12-21 09:24:30

我们也会遇到令人遗憾的情况。在某些情况下,每步时间看起来可能少于20毫秒,而真实的步速可能长达120毫秒。这是由于在发现红色T字母之前,被试者不但只注意红色物体,而且他一批处理三个字母,因而“欺骗”了我们。在这种情况,探照灯移动一步的正确时间就难以确定了。

特丽斯曼同时说明,跳出也可以是非对称的[8]。一个有缺口的圆圈可以在一群完整的圆圈的背景中跳出(图21a);然而要在有缺口的圆圈背景中发现一个完整的圆圈就需要串行搜索(图21b)。

找出与众不同的那一个。

2018-12-21 09:25:15

心理学家是怎样描述前注意加工和注意加工之间的差别呢?最初特丽斯曼认为,前注意加工是以平行的方式把视野内物体的朝向、运动、颜色等简单特征登记在某些特有的子系统中。然后,集中注意以某种方式将这些特征整合到一起。更仔细的实验使她发现,如果特征整合所允许的时间非常短,大脑就会出现差错。有时它会张冠李戴,错误地将特征整合到一起,从而给出一个虚假的组合。在授课时,特丽斯曼用一张快速呈现的幻灯片来演示这种现象。该幻灯片呈现的是一位黑发的红衣女郎。可是,观众中总有几位非常自信地称,他们看到的是一位红发女郎。女郎的毛衣的颜色被错误地“移植”到了头发上,因而产生了幻觉组合。

2018-12-22 14:15:39

将记忆分成几种不同的类型是有益的,尽管对它们的确切描述还存在争议。一种方便的分类是把记忆划分为情景记忆、类别记忆和程序记忆。情景记忆是对一个事件的记忆,它经常与某些与此有联系的无关细节交织在一起。一个很好的例子就是,你会记得当你听说肯尼迪总统遇刺时你在什么地方。类别记忆的一个例子是单词的含义,如“行刺”或“狗”。而回忆如何游泳或驾驶汽车便属于程序记忆。

2018-12-22 14:16:19

另外一种分类方法与时间有关:获得记忆需要多长时间,它一般能保持多久。某些记忆,特别是情景记忆被称为“一次性”或“闪光快门式”学习。仅仅一个事例就可记得很清楚。(当然,这种记忆也可以通过复述被强化。即把这件事再讲一遍,并不要求次次正确。)另一种类型的记忆可通过事件的重复被增强。人们从重复中抽提出某件事物的普遍性质,如,未经明确定义的单词的含义。

2018-12-22 14:16:36

诸如开汽车之类的过程性知识常常很难从一次经历中获得,往往需要重复练习。它可以保持相当长的一段时间。一旦你学会游泳,即使多年没有游过你也会游得很好。当谈及一首熟悉的乐曲时,一位著名的钢琴家曾经对我说:“肌肉的记忆是最久的。”这意味着乐曲的演奏是自动的,无需思索的。

2018-12-22 14:17:30

不同的记忆持续的时间也不同。它们经常被分为长时记忆和短时记忆。尽管这一术语对于不同人可能具有不同的含义。“长时”通常指几小时、几天、几个月乃至几年;“短时”则从几分之一秒到几分钟或更长。短时记忆通常是不稳定的,而且容量有限。

想一想你在梦中的一些事情。当你做梦时,你不能使梦中的任何情景进入长时记忆(或至少清晰地回忆起)。你的大脑把梦中的情景以某种形式的短时记忆保存起来。当你醒来之后(这可能会比你意识到的频繁得多),你的长时记忆系统才被接通。然后,仍然保存在短时记忆中的东西便进入长时记忆。所以你回忆起来的并非你梦到的所有事情,而只是梦的最后几分钟。如果你在刚醒来时受到电话铃或是什么别的干扰,梦的短时记忆就会衰减或完全丧失,以至电话之后你可能连梦的最后几分钟都回忆不起来了。

2018-12-22 14:17:51

我们知道,记忆的回忆不是一个直接的过程。要回忆一件事情往往需要某个线索,尽管这时记忆有可能是扑朔迷离的。有些记忆很弱,需要更强的线索才能唤起。另外的一些甚至在完全丧失前就淡化了。一个相关的记忆可能会干扰和阻碍了你所需要的记忆内容的获取。

2018-12-22 14:19:06

心理学家如何研究各种各样的短时记忆呢?美国心理学家乔治·斯帕林(George Sperling)[13]1960年进行过一个经典的实验。他以极短的时间(约50毫秒)在屏幕上显示一个由12个字母组成的字母集。字母排成3行,每行4个。由于时间太短,被试者每次只能回忆出四五个字母。然后在下一个实验中,他要求被试者仅报告其中的一行。他使用一个声音信号提示被试者应该报告哪一行。但这一线索仅在呈现的图形刚刚关闭之后才给出。在此情况下,被试者可以报告出该线索指示行的4个字母中的大约3个字母。

人们也许仅仅根据第二个实验就得出结论,既然被试者能够报告出3行中任意一行的4个字母中的3个,那么他就能报告出3行字母中的9个(3×3)。但正如我们看到的,实际上他只能回忆出这12个字母中的4~5个。这有力地说明,字母是由大脑从迅速衰减的视觉痕迹中读出的。这种极短时的视觉记忆被称为“图标记忆”,它来自单词icon,是图标的意思。

2018-12-22 14:20:43

图标记忆似乎依赖于瞬时视觉信号的存留时间。它主要不是从信号的后沿算起而是从前沿算起。这表明其生物学功能是提供足够的时间(为100~200毫秒)来处理这种非常短暂的信号。这就意味着,要实现充分的视觉加工,至少需要某个最短的时间。

第六章 知觉瞬间:视觉理论

2018-12-22 14:23:00

让我们考虑如下的情况。首先,给被试者呈现一个20毫秒长的瞬时红光刺激。之后,在原来的地方马上呈现一个20毫秒的绿光刺激。被试者报告看到了什么呢?他看到的不是一个红色闪光紧接着一个绿色的闪光,而是一个黄色闪光。就如同这两种颜色同时闪烁时所看到的情形一样。然而,如果绿色闪光不是紧跟红光之后,被试者就会报告看到红色闪光。这说明,直到来自绿光的信息被加工完之前,被试者不可能意识到黄颜色的存在。

第七章 人脑的概述

2018-12-22 14:37:03

有些传感器对大量来自体外的信息有响应,像眼睛作为光感受器就是对光产生响应。它们对外界的环境起着监视作用。还有一些传感器对体内的活动有响应,比如:对你患有胃痛或是血液的酸性改变都很敏感。因此,它们也对体内变化起着监视作用。神经系统的运动输出就对身体的肌肉产生控制。脑还影响机体各种化学物质的释放,比如:某些激素。直接同所有的输入和输出有关的外周细胞仅仅占神经细胞总数的很少部分。因此,大量的神经细胞只参与系统内部的信息处理。

2018-12-26 14:22:31

广为人知但也非常奇怪的是皮质的左边却大部分与身体的右侧直接相关。一束称为“胼胝体”的神经纤维,将皮质的两个区域连接在一起。在人脑中,胼胝体约有5亿条神经纤维,它们是双向传输的。

第八章 神经元

2018-12-26 14:32:40

在没有任何信号时,神经元通常也会沿着轴突以相对较慢、无规则地传送背景脉冲。这种发放率一般是1~5赫兹(1赫兹表示一秒中有一个脉冲或一个周期)。这种连续的“易激动”活动状态,可以使神经元处于警觉点,并随时对新的刺激做出更强烈发放的准备。由于神经元接收许许多多兴奋的信号,使它处于兴奋状态,则它的发放率就会增至一个很大的值,典型的为5~100赫兹或更高。在短时间间隔内,发放率可达到500赫兹,如图29所示。1秒钟内有500个脉冲,乍听起来觉得很快,但把它与家用电脑的处理速度作一比较,它是极慢的。如果一个神经元接收一个抑制性的信号,它的电脉冲输出可能比正常的背景发放率更少些。但这种减少是那么小,以至于它只能传送相当少的信息。神经元只能沿着轴突下行传送一类信号。当然没有“负”的峰电位。而且,这些电信号一般从胞体沿着轴突单向下行传输,直至这些轴突的终端

2018-12-26 14:36:44

轴突中的峰电位并不像导线中的电流。在金属导线中,电流是由一团电子携带的。在神经元中,细胞绝缘膜上有蛋白质构成的分子门,电效应依赖于通过分子门进出轴突的那些带电离子。由于离子来来回回的运动使跨膜的局域电位发生变化。正是电位的这种变化要下行传输到轴突。这个信号要不断地更新,需要补充能量。因此,沿着轴突下行传输的脉冲不会衰减,而且它的形状和幅度在终点与起始点大体相同。这样的一个特性就使得峰电位在被传送很长的距离后,还能对与轴突末端相联的神经元产生明显的作用。

2018-12-26 14:40:19

实际上,两个神经元不是直接连接在一起的。从电子显微镜拍摄的照片中容易看到,如图32所示,在两个神经元之间有一条明显分界的裂隙,约为四十分之一微米宽,这条裂隙被称为突触裂隙。当电脉冲到达突触前侧时,它能使一小包的化学物质(称为囊泡)释放到突触裂隙中。这些小的化学分子在裂隙中迅速扩散,其中的一些与突触后细胞膜上的分子门结合,使这些特殊的门打开,且允许带电的粒子流入或流出突触后膜,以使跨膜的局域电位发生了变化。整个过程如下所示:

电→化学→电

2018-12-26 14:41:23

一般说来,离子的流入或流出依赖于离子在神经元内外浓度的高低。通常,钠离子(Na+)在神经元内保持低浓度,而钾离子(K+)在神经元内保持高浓度。这是由细胞膜上特殊的分子泵来完成的。

2018-12-27 09:07:43

大多数突触传递是化学的而不是电的,这样一个事实就产生了重要的后果,即一些特殊的小分子在浓度非常低的情况下也阻断它。这就是为什么剂量只有150微克的LSD能引起幻觉的效果。这也能解释为什么一些药在一定条件下能缓减精神状态,例如沮丧,看上去是由于某些神经传递机制的功能衰退而引起的,例如:安眠药中的化学物质结合了GABA受体,增强了GABA的抑制作用功能。这种突触抑制的增强有利于促进睡眠。镇静药利眠灵与安定也是苯二氮況(benzodiazepine)。有类似的功效。

2018-12-27 09:09:47

神经元有一个相当明显的特性,这就是单个神经元具有不同的发放率,从某种角度来说,它具有不同的发放模式。尽管如此,在任何一段时间内,神经元只能发送出有限的信息。然而,神经元在这段时间内通过许许多多的突触而得到的潜在的信息是很大的。当我们孤立地看一个神经元时,这种输入与输出之间的转化过程必定要丢失信息的。然而这种信息的丢失可以用下面的方式得到补偿,即每个神经元对输入的特定组合的反应和传送出这新的信息形式,恰恰不是传送到一个地方,而是到许多地方。因此,由于单根轴突上有许多的分枝,沿着轴突下行传导的电脉冲是以相同的模式被分布在不同的突触上。一个神经元在它的某个突触上接收到的信息与其他许多神经元接收到的是一样的。所有这一切表明了:在某一时刻,我们不能仅仅单独考虑单个神经元,而必须考虑许多神经元综合的效果。

第九章 几类实验

2018-12-27 09:13:08

“研究是一门艺术,即如何设计一些方案去解决那些难题的艺术。”

第十章 灵长类的初级视觉系统

2019-02-17 15:20:22

当输入信息经过视网膜时,需进行第一步加工。事实上,视网膜本身就是脑极其微小的一部分。

2019-02-17 15:21:03

用于明视觉或日间视觉的锥体细胞在眼睛中央凹附近的分布密度极高。因此,我们才能够看到极其微小的细节。这也就是当你为了看清楚某个感兴趣的东西时,你就会注视它的原因。与此相反,当你在黑暗中能够把某个物体看得清楚,这正是由于视网膜上具有很多的视杆细胞。

2019-02-17 15:21:50

眼睛以不同方式移动,它可以跳跃或移动,称为扫视,一般每秒钟为3~4次。灵长类动物的眼睛可以跟踪某个运动目标,这是一个“平滑追踪”的过程。令人难以理解的是当你要使你的眼睛沿着静止的场景做平滑移动时,这几乎是不可能的。如果你一定要试图这样做时,你的眼睛将会做跳跃式的移动,还可以做各种连续的微小移动。不管用什么办法使视网膜上的图像完全保持平稳,那么在1~2秒钟后这种视感觉依然会消失。(这个问题将在十五章作更加详尽的讨论。)

2019-02-28 19:58:43

把信号从眼睛传送到大脑的细胞称为神经节细胞。任何一个特定的神经节细胞只能对视场中某一特定位置上的小光点开启与关闭有响应,如图39所示。由于晶状体把这个光点聚焦到视网膜上该神经节附近的地方,因此它一定要在那个特定的位置上。但这也依赖于眼睛聚焦点的位置。(就像在照相机中,底片上某一特定点的反应既与它在底片上的位置有关,还与照相机聚焦的方向有关。)视场中能够对一个单细胞活动产生影响的区域称之为感受野。

图39 典型神经节细胞的发放记录(左边的神经元是“ON中心”类型的,右边的是“OFF中心”类型。每根短的竖线表示一个脉冲发放。刺激显示在两个黑的长方形中。最上面的示意图表示当没有光照到视网膜上,神经元的背景发放率;下面三幅示意图分别表示当一个小光点、一个大光点和一个光环刺激时,神

2019-02-28 19:58:48

在完全黑暗时,神经节细胞的发放常常是很低且无规则的。这种发放称为背景发放率。有一类神经节细胞叫做ON中心型,即当一个光点投射到感受野中心时,它的发放骤然增加。在这个小的中心以外,围绕它们有一个圆形范围。在这个区域上,如果同样用小光点刺激它时,则发生与之相反的作用。如果光点完全落在环形区域上,则背景发放就完全停止。而当撤光点时,将有一丛脉冲发放,见图39左侧。

假定视网膜上放置各种大小的光点,使它们的中心位于该细胞感受野的中间区域,正如我们所见,当用小光点刺激时,该细胞就强烈发放,而光点的直径越大其响应越小。当这个光点大到足以覆盖中心及围绕它的环形区域时,则该细胞根本就不发放了。换句话说,感受野中心区域的响应与周边是相反的。这就意味着任何一个特定神经节细胞对在恰当位置上的光点刺激具有强脉冲发放,而对其整个区域的均匀光刺激并没有响应。视网膜就是要去掉部分传入眼睛里的冗余信息。它传送到脑中的正是在视野中的感兴趣的信息,在那里光分布是不均匀的,而要忽略的正是几乎不变的部分。

注:这不是edge detector吗

2019-02-28 20:21:20

与ON中心型细胞数目差不多的另一类细胞是OFF中心型细胞。大略地讲,它们与第一类细胞性质正好相反,即当在感受野中心把光点撤走时,它会有强烈的发放(图39的右图)。这就说明了许多神经元相当一般的性质,即它们可以把这些峰电位下行传送到轴突。

2019-02-28 20:21:05

一个神经元不会产生负向的峰电位。那么,它们又怎样传输负信号呢?在丘脑或皮质中要找出一个快的背景发放率,比如说200赫兹,这是相当不容易的。如果这样一类细胞存在的话,通过增加其发放率到400赫兹,则产生一个正的响应,通过降低其发放率至零则产生一个负的响应。通常,替代这种神经元的有另外两类相当类似的神经元,它们都具有很低的背景发放率,一类是当某一参数增加产生发放,另一类则对其减少而有响应。当没有施加任何刺激时,神经元通常也不作出任何反应,更不是200赫兹,这大概是为了保存能量。

2019-02-28 20:21:51

如果大脑要传送在某点按正弦形变化的神经活动,那么当信号为正的时候则某个神经元发放,当它为负时,则另一个神经元发放。但需告诫的是不能用太简单的数学函数去描述所发生的一切。而且,一个真实的神经元常常对输入的突然变化以初始阶段的一丛发放作出响应。而这种时间上的发放模式随神经元而各异,神经元并不是按照数学家的便利而进化的。

2019-02-28 20:22:17

神经节细胞的感受野大小是相当不同的。位于眼睛中心区域的要比外周的感受野要小。节细胞之间相对讲相距是比较近的,因此,它们的感受野是相互重叠的。在视网膜上一个光点通常会引起一组相邻神经节细胞的兴奋,即便它们发放程度并不一样。

注:卷积核

2019-02-28 23:00:46

神经节细胞并不仅仅只有两种主要类型,即ON中心或OFF中心。它们实际上还有好多类别,且每类又包含有其亚型。在哺乳动物中这样的分类方法在各物种间也稍有不同。对于猕猴来说,有两个主要分类,有时称为M细胞和P细胞(M细胞是指Magno,意思为大;P细胞是指Parvo,意思为小)。人眼的神经节细胞与其极为相似。在视网膜的任何地方,M细胞都比P细胞大,而且也具有大的感受野。它们还具有粗厚的轴突,这就使信号的传导速度加快。同时,M细胞对光强分布中的微小差别敏感,因此它能够很好地处理低对比度。但是它们的发放率在高对比度时会达到饱和,它们主要用于对视觉场景中的变化发出信号。

P细胞的数量更多,与多数M细胞相比它们的反应具有更好的线性,即正比于输入。而且它们对细节、高反差及颜色更感兴趣。例如P细胞感受野的中心对绿色波长反应很强,但与环绕中心的外周区对红色波长更敏感。正是由于这个原因,中心与外周具有对不同颜色光的敏感性,则可以把P细胞分成几类亚型,每种亚型对不同颜色的反差有敏感。在这里,我们再次看到,视网膜不仅只是传输落到光感受器上的原始信息,实际上,它已经开始通过多种方式对信息进行处理。

神经节细胞主要包括M细胞和P细胞,每一类都具有ON中心和OFF中心的感受野。它们通过轴突将信号传导到丘脑的侧膝体,然后再将信息传输到新皮质。而且,视网膜也还要将信号投射到上丘(superior colliculus),但P细胞并不投射到那里,尽管一些M细胞和其他各种非主要类型的细胞可以投射到上丘。由于缺乏P细胞的输入,上丘是色盲的。

2019-02-28 23:07:26

很重要的一点是下层中的一些神经元与大脑对侧的上丘相连接,这条通路被称为顶盖间连合(它在第十二章描述的裂脑手术中保持完好)。下层的神经元也连接到脑干上的神经元,控制着眼或颈部的肌肉活动。

这些神经元具有什么样的特性呢?上层中的许多细胞对运动具有选择性。在猕猴中它们是色盲的,即对入射光的波长没有选择性。它们对微弱的刺激很感兴趣,但对刺激的细节不怎么敏感。不管是给光或撤光,它们对光的变化都会作出瞬时性反应。这些大概都是无意识的注意产生的关键。它们发出类似于“注意!有什么东西在那儿”的信号。

任何作过演讲的人可能有这样的经验,当突然发生变化时,例如,演讲者的左边或右边的门打开了,所有的听众的眼睛同时朝向那个方向,这种即刻的反应在很大程度上是无意识的。我认为上丘是产生这类眼动的主要因素。

眼睛究竟怎样知道该往哪里跳跃呢?这就要感谢戴维·斯帕克斯(David Sparks)、戴维·罗宾逊(David Robinson)和其他一些人设计的精巧实验[1]。现在我们对眼动有更好的了解。其实上丘的上层也许可以看作感觉的投射,中间与下层对应于运动系统的投射。在这些区域中,神经元的发放对眼睛变化的方向与振幅进行编码,以便使眼睛以跳跃的方式跟随靶目标。在跳跃之前那一霎那这个信号或多或少是与眼睛的位置无关。这个信号被送到脑干以决定需要作出多大且在什么方向上的跳跃。

这种信号并不能用工程师所猜测的那种方式来表达。一个神经元也许对特定的跳跃方向编码,而它的发放率可能对跳跃的距离进行编码。因此,用这种方法,一个神经元的小集合就可以对所有的方向和距离编码。另一种方法是每个神经元就可以对跳跃的向量,即方向和距离进行编码。实际上并不是这样的。为了产生一个跳跃,上丘中一片神经元就开始快速发放。从广义上讲,它是确定跳跃向量的运动映射图的活动中心。这样一个特定的上丘神经元也许参加到许多极为不同的跳跃中。正是这些激活的神经元作为一个整体以便确定跳跃向量特性。简言之,一次眼动都将受到许多神经元的控制。

2019-02-28 23:07:43

眼动的速度究竟由什么来控制呢?这可能与激活区域内神经元的发放率有关。它们发放得越强,眼睛移动得也越快。因此,最终的跳跃方向不仅依赖于有关的神经元发放有多么快,而且还依赖于这群活动的神经元的有效中心在运动系统定位图上的位置。

2019-02-28 23:09:36

你可能会发现这种排列方式很独特,但它是个极好的例子,可以说明一群神经元怎样对相关的参数,如:眼动的速度与方向进行编码的。它的优点是如果一些神经元不参与活动了,整个系统也不会停止工作,没有一个工程师能够设计出这样一个系统,除非他已经了解脑是怎样工作的。当这些信号到达脑干时,必须以不同的信号集合去传递,以便控制眼睛的肌肉。究竟怎样恰当地做到这一点还待进一步研究。

第十一章 灵长类的视皮质

2019-03-02 19:42:03

为什么皮质V1区具有视野的映射(尽管这种映射比较粗糙并有扭曲)?这并不是因为有一个小矮人观看它——我们的惊人的假说反对这种观点。最可能的原因是这样能保持脑的连线更短些。V1区的神经元主要关心的只是视野内一个小区域中发生的事情,它需要与其他一些神经元相互作用以提取它们表达的信息,一种大致的映射使得它们彼此保持相当近。理论家们指出,这种最短接线要求也可以解释在皮质发现的各种类型的分块现象,因为它允许在一个整体的主要映射中存在多个子映射[2]。一个子映射中的一小块可能在内部有强相互作用,同时与同一子映射内的邻近部分有稍长一些的连接。这样的小块还可能与邻近的其他类型的子映射的部分有较弱的局部连接。按照同样的方式,有时把一座城市考虑成由许多具有共同利益的相互作用的地方社团组成,这是有好处的。如何布置这些团体,部分是为了使交流更便利。因此整个城市散布有许多超级市场,而每个居民都离其中某一家不太远。

最终需要在所有层次上确定这个连接线的经济学问题。将该问题与新皮质神经元总数保持在一个合适的最小值的需要联系在一起,可以很好地解释皮质(特别是视觉系统)组织的一般规律。

2019-03-02 19:43:04

有些习惯用语表征了神经元的反应特性(如V1区许多神经元对朝向的反应),它们是有用的。一个常用词是“特征检测器”,它确实抓住了事实,即有些神经元对朝向敏感,有些则对视差或波长敏感,等等。但它却有两个缺点。首先,它暗示神经元仅对它名字前的“特征”反应。(有些人或许认为它是唯一对该特征反应的神经元,但这远非事实。)这忽视了该神经元也可能对其他特征(通常是相关的特征)反应这个事实。例如,一个对朝向敏感、具有端点抑制反应的细胞对(适当位置适当朝向的)短线有很好的反应;但由于感受野的子结构,它也会对部分在其感受野内部的长得多的直线的曲率敏感。

2019-03-02 19:43:34

对特征检测器的第二种误解是它暗示神经元被脑用于产生那种特定特征的觉知。这不一定是事实。例如,一个对不同波长有不同反应的神经元并不一定是使你看到颜色的系统的一个核心部分。它可能属于另一个系统,仅仅将脑的注意引向颜色差异,而并不产生关于该颜色的觉知。

第十二章 脑损伤

2019-03-02 22:25:00

对大多数习惯于用右手的人而言,只有左半球能说话或通过写字进行交流。对于与语言相关的大多数能力也是如此,尽管右半球能在很有限的程度上理解口语,或许还能处理说话的音韵。当胼胝体被切除后,左半球只能看到视野右边的一半,而右半球则只能看到左边的一半。每只手主要是由对侧半球控制,但同侧半球能控制手或手臂做某些比较粗糙的运动。除了特殊情况,每个半球都能听到说话。

2019-03-02 22:25:58

请注意,除了提到语言通常在左脑外,我并未涉及脑的两半有什么差异。我不必关心右侧脑是否有某些特殊能力,例如它十分擅长识别面孔。我也不必考虑某些人的一种极端的观点。他们认为左侧具有“人”的特性,而右侧则仅仅是自动机。显然右侧缺乏发展完善的语言系统,因而从某种意义上说不那么具有“人类”的特点——因为语言是唯一标志人类的能力。事实上我们需要回答右侧是否高于自动机这个问题,但我觉得应该稍作等待,直到我们更好地理解意识的神经机制,否则我们不能很好地作出回答,更不必说自由意志问题了。折衷的职业观点强调,除了语言外,两侧的感知和运动能力虽不完全相同,但一般特征是一致的。

第十三章 神经网络

2019-03-03 23:46:47

脑的工作方式则通常是大规模并行的。例如,从每只眼睛到达脑的轴突大约有100万个,它们全都同时工作。在系统中这种高度的并行情况几乎重复出现在每个阶段。这种连线方式在某种程度上弥补了神经元行为上的相对缓慢性。它也意味着即使失去少数分散的神经元也不大可能明显地改变脑的行为。用专业术语讲,脑被称作“故障弱化”(degrade gracefully)。而计算机则是脆弱的,哪怕是对它极小的损伤,或是程序中的一个小错误,也会引起大的灾难。计算机中出现错误则是灾难性的(degrade catastrophically)。

2019-03-03 23:48:00

对于这种探讨的一种合理的解释是,虽然脑的活动是高度并行的,在所有这些平行操作的顶端有某些形式的(由注意控制的)序列机制。因而,在脑的操作的较高层次,在那些远离感觉输入的地方,可以肤浅地说脑与计算机有某种相似之处。

2019-03-03 23:54:18

下一个引起广泛注意的发展来自约翰·霍普菲尔德(John Hopfield),一位加利福尼亚州理工学院的物理学家,后来成为分子生物学家和脑理论家。1982年他提出了一种网络,现在被称为霍普菲尔德网络[6](图53)。这是一个具有自反馈的简单网络。每个单元只能有两种输出:-1(表示抑制)或+1(表示兴奋)。但每个单元具有多个输入。每个连接均被指派一个特定的强度。在每个时刻单元把来自它的全部连接的效果总和起来。如果这个总和大于0则置输出状态为+1(平均而言,当单元兴奋性输入大于抑制性输入时,则输出为正),否则就输出-1。有些时候这意味着一个单元的输出会因为来自其他单元的输入发生了改变而改变。

霍普菲尔德网络(有时又称作交叉线网络——crossbar network)的连线示意图。

2019-03-03 23:54:00

计算将被一遍遍地反复进行,直到所有单元的输出都稳定为止。在霍普菲尔德网络中,所有单元的状态并不是同时改变的,而是按随机次序一个接一个进行。霍普菲尔德从理论上证明了,给定一组权重(连接强度)以及任何输入,网络将不会无限制地处于漫游状态,也不会进入振荡,而是迅速达到一个稳态。

2019-03-03 23:54:25

霍普菲尔德在他的网络中使用了一种形式的赫布规则来调节连接权重。对于问题中的一种模式,如果两个单元具有相同的输出,则它们之间的相互连接权重都设为+1。如果它们具有相反的输出,则两个权重均设为-1。大致地说,每个单元激励它的“朋友”并试图削弱它的“敌人”。

2019-03-03 23:54:42

霍普菲尔德网络是如何工作的呢?如果网络输入的是正确的单元活动模式,它将停留在该状态。这并没有什么特别的,因为此时给予它的就是答案。值得注意的是,如果仅仅给出模式的一小部分作为“线索”,它在经过短暂的演化后,会稳定在正确的输出即整个模式上。在不断地调节各个单元的输出之后,网络所揭示的是单元活动的稳定联系。最终它将有效地从某些仅仅与其存储的“记忆”接近的东西中恢复出该记忆。此外,这种记忆也被称作是按“内容寻址”的——即它没有通常计算机中具有的分离的、唯一用于作为“地址”的信号。输入模式的任何可察觉的部分都将作为地址。这开始与人的记忆略微有些相似了。

请注意记忆并不必存储在活动状态中,它也可以完全是被动的,因为它是镶嵌在权重的模式之中的即在所有各个单元之间的连接强度之中。网络可以完全不活动(所有输出置为0),但只要有信号输入,网络突然活动起来并在很短时间内进入与其应当记住的模式相对应的稳定的活动状态。据推测,人类长期记忆的回忆具有这种一般性质(只是活动模式不能永久保持)。你能记住大量现在一时想不起来的事情。

2019-03-03 23:54:52

神经网络(特别是霍普菲尔德网络)能“记住”一个模式,但是除此以外它还能再记住第二个模式吗?如果几个模式彼此不太相似,一个网络是能够全部记住这几个不同模式,即给出其中一个模式的足够大的一部分,网络经过少数几个周期后将输出该模式。因为任何一个记忆都是分布在许多连接当中的,所以整个系统中记忆是分布式的。因为任何一个连接都可能包含在多个记忆中,因而记忆是可以叠加的。此外,记忆具有鲁棒性,改变少数连接通常不会显著改变网络的行为。

为了实现这些特性就需要付出代价,这不足为奇。如果将过多的记忆加到网络之中则很容易使它陷入混乱。即使给出线索,甚至以完整的模式作为输入,网络也会产生毫无意义的输出。有人提出[8][9]这是我们做梦时出现的现象(弗洛伊德称之为“凝聚”——condensation),但这是题外话。值得注意的是,所有这些特性是“自然发生”的。它们并不是网络设计者精心设置的,而是由单元的本性、它们连接的模式以及权重调节规则所决定的。

霍普菲尔德网络还有另一个性质,即当几个输入事实上彼此大致相似时,在适当计算网络的连接权重后,它“记住”的将是训练的模式的某种平均。这是另一个与脑有些类似的性质。对我们人类而言,当我们听某个特定的声调时,即便它在一定范围内发生变化,我们也会觉得它是一样的。输入是相似但不同的,而输出——我们所听到的——则是一样的。

2019-03-03 23:55:13

有趣的是,这些简单的神经网络具有全息图的某些特点。在全息图中,几个影像可以彼此重叠地存储在一起;全息图的任何一部分都能用来恢复整个图像,只不过清晰度会下降;全息图对于小的缺陷是鲁棒的。对脑和全息图两者均知之甚少的人经常会热情地支持这种类比。几乎可以肯定这种比较是没有价值的。原因有两个。详细的数学分析表明神经网络和全息图在数学上是不同的[10]。更重要的是,虽然神经网络是由那些与真实神经元有些相似的单元构建的,没有证据表明脑中具有全息图所需的装置或处理过程。

2019-03-03 23:58:10

训练一个网络需要有供训练用的输入集合,称作“训练集”。很快我们在讨论网络发音器(NETtalk)时将看到一个这样的例子。这有用的训练集必须是网络在训练后可能遇到的输入的合适的样本。通常需要将训练集的信号多次输入,因而在网络学会很好地执行之前需要进行大量的训练。其部分原因是这种网络的连接通常是随机的。而从某种意义上讲,脑的初始连接是由遗传机制控制的,通常不完全是随机的。

注:预训练?

2019-03-03 23:59:40

Adaline网络是使用有教师学习的一个较早的例子。它是1960年由伯纳德·威德罗(Bernard Widrow)和霍夫(M. E. Hoff)设计的,因此δ-律又称作威德罗-霍夫规则。他们设计规则使得在每一步修正中总误差总是下降的。这意味着随着训练过程网络最终会达到一个误差的极小值。

2019-03-04 00:05:46

输入是通过一种特殊的方式一个字母接一个字母地传到网络中。NETtalk的全部输出是与口头发音相对应的一串符号。为了让演示更生动,网络的输出与一个独立的以前就有的机器(一种数字发音合成器)耦合。它能将NETtalk的输出变为发音,这样就可以听到机器“朗读”英语了。

2019-03-04 00:06:02

显然网络不仅仅是它所训练过的每一个单词的查询表。它的泛化能力取决于英语发音的冗余度。并不是每一个英语单词都按自己唯一的方式发音

2019-03-04 00:06:27

相对于大多数从真实神经元上收集的资料而言,神经网络的一个优点在于在训练后很容易检查它的每一个隐单元的感受野。一个字母仅会激发少数几个隐单元,还是像全息图那样它的活动在许多隐单元中传播呢?答案更接近于前者。虽然在每个字母发音对应中并没有特殊的隐单元,但是每个这种对应并不传播到所有的隐单元。

因此便有可能检查隐单元的行为如何成簇的(即具有相同的特性)。塞吉诺斯基和罗森堡发现“……最重要的区别是元音与辅音完全分离。然而在这两类之中隐单元簇具有不同的模式。对于元音而言,下一个重要的变量是字母,而辅音成簇则按照了一种混合的策略,更多地依赖于它们声音的相似性”。

这种相当杂乱的布置在神经网络中是典型现象,其重要性在于它与许多真实皮质神经元(如视觉系统中的神经元)的反应惊人地相似,而与工程师强加给系统的那种巧妙的设计截然不同。

他们的结论是:

NETtalk是一个演示,是学习的许多方面的缩影。首先,网络在开始时具有一些合理的“先天”的知识,体现为由实验者选择的输入输出的表达形式,但没有关于英语的特别知识——网络可以对任何具有相同的字母和音素集的语言进行训练。其次,网络通过学习获得了它的能力,其间经历了几个不同的训练阶段,并达到了一种显著的水平。最后,信息分布在网络之中,因而没有一个单元或连接是必不可少的。作为结果,网络具有容错能力,对增长的损害是故障弱化的。此外,网络从损伤中恢复的速度比重新学习要快得多。

尽管这些与人类的学习和记忆很相似,但NETtalk过于简单,还不能作为人类获得阅读能力的一个好的模型。网络试图用一个阶段完成人类发育中两个阶段出现的过程,即首先是儿童学会说话;只有在单词及其含义的表达已经建立好以后,他们才学习阅读。同时,我们不仅具有使用字母发音对应的能力,似乎还能达到整个单词的发音表达,但在网络中并没有单词水平的表达。

注意到网络上并没有什么地方清楚地表达英语的发音规则,这与标准的计算机程序不同。它们内在地镶嵌在习得的权重模式当中。这正是小孩学习语言的方式。它能正确地说话,但对它的脑所默认的规则一无所知。

2019-03-04 00:08:10

另一个神经网络是由西德尼·莱基(Sidney Lehky)和特里·塞吉诺斯基设计的[13]。他们的网络所要解决的问题是在不知道光源方向的情况下试图从某些物体的阴影中推断出其三维形状(第四章描述的所谓从阴影到形状问题)。对隐层单元的感受野进行检查时发现了令人吃惊的结果。其中一些感受野与实验中在脑视觉第一区(V1区)发现的一些神经元非常相似。它们总是成为边缘检测器或棒检测器,但在训练过程中,并未向网络呈现过边或棒,设计者也未强行规定感受野的形状。它们的出现是训练的结果。此外,当用一根棒来测试网络时,其输出层单元的反应类似于V1区具有端点抑制(endstopping)的复杂细胞。

网络和反传算法二者都在多处与生物学违背,但这个例子提出了这样一个回想起来应该很明显的问题:仅仅从观察脑中一个神经元的感受野并不能推断出它的功能。正如第十一章描述的那样,了解它的投射野,即它将轴突传向哪些神经元,也同样重要。

2019-03-04 00:09:46

我们已经关注了神经网络中“学习”的两种极端情况:由赫布规则说明的无教师学习和反传算法那样的有教师学习。此外还有若干种常见的类型。一种同样重要的类型是“竞争学习”。其基本思想是网络操作中存在一种胜者为王机制,使得能够最好地表达了输入的含义的那个单元(或更实际地说是少数单元)抑制了其他所有单元。学习过程中,每一步中只修正与胜者密切相关的那些连接,而不是系统的全部连接。这通常用一个三层网络进行模拟,如同标准的反传网络,但又有显著差异,即它的中间层单元之间具有强的相互连接。这些连接的强度通常是固定的,并不改变。通常短程连接是兴奋性的,而长程的则是抑制性的,一个单元倾向于与其近邻友好而与远处的相对抗。这种设置意味着中间层的神经元为整个网络的活动而竞争。在一个精心设计的网络中,在任何一次试验中通常只有一个胜者。

这种网络并没有外部教师。网络自己寻找最佳反应。这种学习算法使得只有胜者及其近邻单元调节输入权重。这种方式使得当前的那种特殊反应在将来出现的可能性更大。由于学习算法自动将权重推向所要求的方向,每个隐单元将学会与一种特定种类的输入相联系。

2019-03-04 00:12:15

坚持要求所有的模型应当经过模拟检验,这令人遗憾地带来了两个副产品。如果一个的假设模型的行为相当成功,其设计者很难相信它是不正确的。然而经验告诉我们,若干差异很大的模型也会产生相同的行为。为了证明这些模型哪个更接近于事实,看来还需要其他证据,诸如真实神经元及脑中该部分的分子的准确特性。

另一种危害是,对成功的模型过分强调会抑制对问题的更为自由的想象,从而会阻碍理论的产生。自然界是以一种特殊的方式运行的。对问题过于狭隘的讨论会使人们由于某种特殊的困难而放弃极有价值的想法。但是进化或许使用了某些额外的小花招来回避这些困难。尽管有这些保留,模拟一个理论,即便仅仅为了体会一下它事实上如何工作,也是有用的。

第十四章 视觉觉知

2019-03-04 09:17:59

菲力普·约翰逊-莱尔德认为,脑和现代计算机一样,具有一个操作系统。该操作系统的行为与意识相对应。他在著作《心理模型》(Mental Models)一书中,从更加广阔的背景下提出了这一思想。他认为,有意识和无意识过程的区别在于后者是脑中高度的并行处理的结果。正如我已在视觉系统中所描述的那样,这种并行处理就是大量的神经元能够同时工作,而不是序列式地一个接一个地处理信息。这才能使有机体有可能进化成具有特殊的、运转快速的感觉、认知及运动系统。而更为序列式的操作系统对所有这些活动进行全局控制,这样才能够快速、灵活地作出决定。粗略地打个比方,这就好像一个管弦乐队的指挥(相当于操作系统)控制着乐队所有成员同时演奏一样。

约翰逊-莱尔德假定,虽然这个操作系统可以监视它所控制的神经系统的输出,它能利用的只是它们传递给它的结果,而不是它们工作的细节。我们通过内省只能感觉到我们脑中所发生的情形的很少的一部分。我们无法介入能产生信息并传给脑的操作系统的许多运作中。因为他将操作系统视为主要是序列式的,所以他认为,“在内省时,我们倾向于迫使本来是并行的概念进入序列式的狭窄束缚中。”这是使用内省法会出现错误的原因。

2019-03-04 09:22:11

当我们看见一个物体时,脑子里究竟发生了些什么呢?我们会看到的可能存在的、不同的物体几乎是无限的。不可能对每个物体都存在一个相应的响应细胞(这种细胞常被称为“祖母细胞”)。表达如此多具有不同深度、运动、颜色、朝向及空间位置的物体,其可能的组合大得惊人。不过这并不排除可能存在某些特异化的神经元集团,它们对相当特定的、生态上有重要意义的目标(如脸的外貌)有响应。

似乎有可能的是,在任意时刻,视野中每个特定的物体均由一个神经元集团的发放来表达。由于每个物体具有不同的特征,如形状、颜色、运动等,这些特征由若干不同的视觉区域处理,因而有理由假设看每一个物体经常有许多不同视觉区域的神经元参与。这些神经元如何暂时地变成一个整体同时兴奋呢?这个问题常被称为“捆绑问题”(binding problem)。由于视觉过程常伴随听觉、嗅觉或触觉,这种捆绑必然也出现在不同感觉模块之间。

2019-03-04 09:23:31

捆绑有若干种形式。一个对短线响应的神经元可以认为把组成该直线的各点捆绑在一起。这种神经元的输入和行为最初可能是由基因(及发育过程)确定的,这些基因是我们远古的祖先的经验进化的结果。另一种形式的捆绑,如对熟悉物体的识别,又如熟悉的字母表中的字母,可能从频繁的、重复性的体验中获得,也就是说,是通过反复学习得到的。这或许意味着参与某个过程的大量神经元最终彼此有紧密的连接。这两种形式的相当永久的捆绑可以产生一些神经元群体,它们作为整体可以对许多物体(如字母、数字及其他熟悉的符号)作出反应。但脑中不可能有足够多的神经元去编码几乎无穷数目的可感知的物体。对语言也是如此。每种语言都有大量但却是数目有限的单词,而形式正确的句子的数目却几乎是无限的。

2019-03-04 09:24:41

我们最为关心的是第三种形式的捆绑。它既不是由早期发育确定的,也不是由反复学习得到的。它特别适用于那些对我们而言比较新奇的物体,比如说我们在动物园里看见的一只新来的动物。在多数情况下,积极地参与该过程的神经元之间未必有较强的连接。这种捆绑必须能够快速实现。因此它主要是短暂的,并必须能够将视觉特征捆绑在一起构成几乎无限多种可能的组合,只不过也许在某一时刻它只能形成不多的几种组合。如果一种特定的刺激频繁地出现,这种第三种形式的瞬间的捆绑终将会建立起第二种形式的捆绑即反复学习获得的捆绑。

遗憾的是,我们并不了解脑如何表达第三种形式的捆绑。特别不清楚的是,在集中注意的觉知时,我们究竟每次仅仅感知一个物体,还是可以同时感知多个物体。表面上看,我们每次能感觉的绝不只一个物体,但这是否可能是错觉呢?脑真的能如此快速一个接一个地处理多个物体的信息,以致它们好像同时出现在我们脑海中吗?也许我们每次只能注意一个物体,但在注意之后,我们可以大致记住其中几个。因为我们并不确切知道,所以我们必须考虑所有这些可能性。让我们先假设脑每次只能处理一个物体。

2019-03-04 09:26:40

当然,意识的神经关联可能仅仅包含一种特殊类型的神经元,比如说,某个特殊皮质上的一种锥体细胞。一种最为简单的观点是,当这个特殊神经元集团的某些成员以一个相当高的频率发放(比如大约400或500赫兹),或维持一段适当长时期的发放,此时觉知便出现了。这样,捆绑仅仅对应于皮质神经元中相当小的一部分,它们在皮质中若干不同的区域同时高频发放(或都发放很长一段时间)。看起来这会有两个结果:这种快速或持续性的发放将增强这个兴奋的神经元集团对所投射到的神经元的影响,而这些被影响的神经元则对应于此时脑所觉知的物体的“意义”。同时,这种快速的(或持续的)发放将激活某种形式的极短时记忆。

然而如果脑能同时精确地觉知不只一个物体,那么这种观点就不能成立。即便脑每次只处理一个物体,它也必须区分目标和背景。为了理解这一点,不妨想象在一个视野中靠近视觉中央的地方,恰好有一个红色的圆和一个蓝色的方块。那么,对应于觉知的某些神经元将会快速发放(或持续发放一段时间),有些标识红色,有些标识蓝色,其他一些标识圆,当然还有一些标识方块。脑又怎样知道哪种颜色与哪种形状相互搭配呢?换句话说,如果觉知仅仅对应于快速(或持续)的发放,脑多半会将不同物体的属性混在一起。

2019-03-04 09:28:44

有许多方法可以解决这个困难。或许只有当脑注意某个物体时才会形成对它的生动的觉知。或许注意机制使对被注意的物体反应的神经元的活动增强,同时削弱对其他物体反应的神经元的活动。倘若如此,脑只能随着注意机制从一个物体跳跃到另一个物体,一个接一个地进行处理。毕竟,当我们转动眼睛时,情形是这样的。我们先注意视野中的一部分区域,然后转而注意另一区域,如此下去。由于我们不动眼睛就能同时看见多个物体,故注意机制的速度必须比上述情况要快,并能在眼的两次转动之间工作。

2019-03-04 09:29:31

第二种替代的解释是,注意机制以某种方式使不同的神经元以多少不同的方式发放。此时的关键在于相关发放。它基于这样一种观点,即重要的不仅仅在于神经元的平均发放率,更是每个神经元发放的精确时间。为简单起见,让我们仅仅考虑两个物体。对第一个物体的特征反应的神经元都在同一时刻以某种模式发放,相应于第二个物体的神经元也都同时发放,但发放的时间与第一个神经元集团不同。

举个理想化的例子可以把这个问题讲得更清楚。假设第一集团中的神经元发放很快。或许它们还会再次发放,比如说是在100毫秒以后。同样,在第二簇发放后过100毫秒又再次发放,如此下去。假设第二群神经元也同样每隔大约100毫秒发放一簇高速脉冲,但是只在第一群神经元处于静息状态的时候才发放。这样,脑中的其他部分不会把这两群神经元的发放混在一起,因为它们从不会同时发放(图57)。

注:有点进入信息论和通信的范畴:区分两条信息必须要有足够的间隔。但这似乎仍然需要一种同步机制,可以解释为上一段提到的注意力or再往前提到的自省/“操作系统”?

2019-03-04 09:33:58

此处的基本观点是:同时到达一个神经元的许多脉冲将比不同时刻到达的同样数目的脉冲产生更大的效果。其理论要求是同一群神经元的发放有较强的关联,同时不同群的神经元之间关联较弱,甚至根本没有关联。

注:这样可以推出同一群神经元的发放时间差不多(仍然来源于某种长期的同步),然后错误的重叠因为信号不够强,被巧妙地抑制掉了(有点像去噪/错误纠正)但如果是这样,假如恰好这个错误信号很强,就有可能造成错误的搭配理解,这是否可以用来解释错觉?

第十五章 一些实验

2019-03-04 19:40:54

双眼竞争现象。当两只眼睛接收与视野中同一部分有关的不同视觉输入时,这种情况就会出现。头部左侧的初级视觉系统接收视野中双眼凝视点右侧的输入信息(右侧则与此相反)。如果两侧的输入不能融合,而是先看到一个输入,再看到另一个,如此不断交替,则这两种互相冲突的输入称为是“竞争的”。

2019-03-04 20:51:08

马里兰州贝塞斯塔(Bethesda)的国立精神卫生研究所的罗伯特·德西蒙(Robert Desimone)和同事们曾经训练猴子凝视视觉显示一侧的一个点并(目不转睛地)注意该显示的某个特征[11、12]。随后闪现各种信号。实验者研究了在皮质V4区的一个特定神经元对该位置上的视觉显示的响应。V4区的神经元对颜色更敏感。假设研究的神经元对具有一定朝向的红色棒有反应,而绿色的棒对它没有影响。(当然,此时V4区中未被研究的其他神经元,有些也会对绿色棒而不是红色棒有反应。)每次显示均包括两种颜色棒,一根红色的(对该神经元为有效刺激),而另一根为绿色(无效刺激)。二者均在神经元的感受野内。当猴子注意红色棒占据的位置时,神经元的发放与猴子不注意时相同,或者更高些。然而,在那些猴子注意绿色棒的实验中,这个对红色敏感的神经元的发放降低了。因此,注意不仅仅是个心理学的概念。它的影响可以在神经元水平上观察到。当猴子注意某处时,对被注意刺激敏感的神经元发放会增强,而当猴子注意其他位置时,尽管眼睛的位置以及输入的视觉信息与上次完全相同,那个神经元的发放也会减弱。

他们这样描述所得的结果:

V4区的神经元……具有如此大的感受野,以致许多刺激都落入其中。人们也许期望这样的细胞的行为就反映了其感受野内所有刺激的特征。然而已经发现,当猴子将其注意局限在一个V4区……细胞的感受野的一个位置时,该细胞的反应首先由被注意位置上的刺激决定,就好像感受野围绕着注意到的刺激渐渐“收缩”一样。

由于理解它们并不容易,我就不详细描述他们的结果了。他们指出,关于注意的探照灯的简单理论似乎并不正确。要解释它们需要更复杂的机制,而这种机制尚未建立。

2019-03-04 20:51:46

如果通过化学手段使丘脑后结节的一小块区域的抑制增强,猴子转移注意会更困难;相反,降低抑制将使转移变得容易。其他人进行的一些实验表明,丘脑后结节扮演的角色是抑制来自无关事件的输入。对三名丘脑损伤患者的研究表明他们形成注意有一定困难。对正常人的PET扫描显示,当视觉任务分散注意力时,丘脑后结节的活动增强。这些干扰物使得被试用更多的注意来完成任务。所有这些结果(综述文章见参考文献13)有力地表明丘脑的这些部分与在视觉注意的多个方面密切相关。

第十六章 种种推测

2019-03-04 21:13:45

觉知神经元的发放常常可能就是有关的神经网络决策而得的结果,这是它的特点之一。做出公正的妥协是个线性过程,而做出一个敏锐的决策则是高度非线性的。比如说,选举美国总统是一个非线性过程,而按比例选代表则更接近于线性,至少在每个人投完选票以后是这样。神经元及经扩展而形成的神经网络,其行为是高度非线性的,原则上这是没有困难的。

对于神经元而言,这个机制很可能像总统选举那样是胜者为王过程——即有许多神经元相互竞争,但仅有一个(或极少数)能获胜,这就是意味着它的发放更为剧烈,或以某些特殊形式发放,同时其他所有神经元则被迫发放更慢,或者根本不发放。

这在人工神经网络中是很容易实现的,只需使每个神经元具有兴奋性输出,同时抑制其他所有竞争者即可。活动最强的神经元有希望压制所有的对手(就像在选举中那样!)。但对于真实神经元而言就不那么简单,因为大多数情况下单个神经元的输出只能是兴奋性的或抑制性的,而不能二者兼有。有许多种策略可能避开这个困难,比如,使得所有兴奋性神经元刺激一个抑制性神经元,而后者反过来又抑制所有的兴奋性神经元,那么对平均抑制优势最大的那个神经元则有可能成为胜者。设计一个能令人满意地执行胜者为王操作的神经网络需要一定技巧,但确实是可以做到的,特别是如果允许有不止一个获胜者的话。

2019-03-04 21:17:34

想一下,记忆有两种主要类型。当你主动回忆某件事情时,必定在你的脑中某些地方有神经元发放来表达这个记忆。然而,你能记忆许多事情,诸如自由女神像,或是你的生日,但在某一时刻你并不在回忆它们。一般情况下,这种潜在的记忆并不需要相关的神经发放。在储存记忆时,许多突触连接的强度(以及其他参数)被改变了,使得在给定合适的线索后,所需要的神经活动能被重新生成。这样记忆就储存在脑中了。

2019-03-04 21:17:54

活动回忆和潜在记忆,(这两种记忆形式中)哪一种参与了我们所感兴趣的极短时记忆呢?比较可能的是活动形式的记忆,即,你对一个目标或一个事件的立刻的记忆很可能是以神经的主动发放为基础的。这又是怎样发生的呢?我认为至少有两种可能的方式。

由于神经元具有的某些内在特性,如它的许多离子通道的特点,一旦它被激发之后,可能会持续发放。这种发放会持续一段时间后消退,或者该神经元在接受到某些使它停止发放的外界信号之前一直发放。而第二种机制则有很大差别,它不仅涉及神经元本身,还与其他神经元的连接方式有关。可能存在一些“回响回路”,即由神经元组成的一个闭环,环上的每个神经元要使下一个神经元兴奋,并保持这种活动性不断地循环。这两种机制都可能出现,它们并不互相快速脉冲序列可产生一个较大的增长。这种突触强度的增加随后以一种复杂的方式衰减,有些较快,约50毫秒;而慢者衰减时间在几分之一秒到一分钟左右。这正是短时记忆所涉及的时间。还有一些证据预示这也出现在新皮质的突触上。看来这主要是由突触的输入一侧(突触前侧)的改变引起的,并可能牵涉到附近的钙离子,以及突触结合处附近的突触囊泡的运动。无论是何原因,几乎可以肯定它是存在的。其大小是可察觉到的。

遗憾的是,现在关于这些瞬间改变的工作极少,这主要是由于突触强度的长时程改变(一个当前很热门的话题)更容易研究。大多数神经网络的理论工作也没有考虑这种情况。因此我们处于很奇怪的境地:一种对意识(特别是视觉觉知)可能是十分重要的现象,同时被实验学家和理论学者忽略了。

或许这种突触权重的瞬间改变对短暂维持回响回路也是重要的。有关突触强度的增加有助于回路保持其回响发放。

第十七章 振荡和处理单元

2019-03-04 21:21:22

正如前面已经叙述过的,当视野内出现适当的刺激时,视皮质的一些神经元会变得活跃起来,并以一定的节律形式发放。在它们附近的平均的局部电活动(场电位)常表现为在40赫兹范围内的振荡。这种神经元发出的脉冲并不随机出现,而是和局域的振荡“合拍的”(图60)。一个神经元会合拍地发放由两三个脉冲形成的短簇。有时它也可能根本不发放;但当它发放时,经常是与它的一些神经元“同伴”近似同步的。这些振荡并不很规则。它们的波形更像一个随手画出的粗糙的波,而不像具有恒定频率的非常规则的数学上的波。

2019-03-04 21:22:26

德国的这两个研究小组都认为,这些40赫兹振荡可能是脑对捆绑问题的解答。他们提出,标志同一个物体所有不同属性(形状、颜色、运动等)的神经元通过同步发放将这些属性捆绑到一起。科赫和我将这一观点更推广了一步,认为这种与γ振荡(35~75赫兹)合拍(或在此附近)的同步发放可能是视觉觉知的神经关联[7]。这种行为将是其他理论家提出的相关发放的一个特殊情况。

我们还认为,注意机制的主要功能可能是选择一个被注意的物体,然后帮助把所有神经元同步结合起来,这些神经元对应于脑对这部分视觉输入的最佳解释。我们猜测,丘脑是“注意的器官”,它的某些部分控制注意的“探照灯”在视野中从一个显著目标跳向另一个。

注:跟我前面的猜测(2019-03-04 09:29:31)想法一致

2019-03-04 21:23:35

一些新的实验使用了轻度麻醉的猴,在皮质第六区的也发现了振荡[8]。在清醒的猴子皮质MT区的实验表明,使用运动棒作为视觉输入时能观察到振荡[9],而当呈现伪随机运动的点组成的图案时则不然[10]。目前尚不能解释这种行为上的差异。这更像是振荡参与了图形/背景的鉴别,而不是视觉觉知。

2019-03-04 21:27:43

我甚至常对自己说,我能瞥见某些答案。不过这是人们长久地研究一个问题时产生的一种共同的幻觉

2019-03-04 21:29:36

尽管有所有这些不确定性,在仔细考虑所有这些非常分散的事实和推测之后,是否有可能描绘出一些全局性的示意图(哪怕是尝试性的),用来大致指导我们穿过面前的丛林呢?让我抛弃那些谨慎,勾画一个可能的模型。现实可能比它要复杂得多,而不大可能更简单。

意识是与某种神经活动相关联的。一个合理的模型认为这些活动发生在皮质的较低层次,如第5层、第6层。这种活动性表达了主要发生在皮质其他层次上的大部分“计算”的局部的(暂时的)结果。

并非较低层次上所有的皮质神经元都能表达意识。最主要的种类是位于第5层的大的“成簇”的锥状细胞,例如向皮质系统外投射的那些细胞。

除非这些特殊的较低层次的活动由某些形式的极短时记忆维持不变,否则它不能到达意识。有理由认为,这可能需要一个有效的回响回路,从皮质第6层到丘脑,再返回到皮质第4层、第6层。如果缺乏这个回路,或者第4层太小,就不可能维持这些回响。因此仅有一些皮质区域能表达意识。

处理单元(其中仅有一些与意识有关)是这样一些皮质区域的集合,它们处于视觉等级的同一层次上,并彼此向对方的第4层投射。每个这样的皮质区域集合都仅与丘脑的一个小区域有强连接。这样的区域通过同步发放协调与它相关的皮质区的电活动。

丘脑与注意机制密切相关。在进行物体标识操作(特别是图形/背景分离)时所需的特殊捆绑,通常具有调谐的发放形式,它的节律通常在40赫兹范围内。

参与意识的区域可能影响(不必是直接的)自主运动系统的一部分。(二者之间可能有某些无意识的操作,如思考。)

再重复一下,意识主要依赖于丘脑与皮质的连接。仅仅当某些皮质区域具有回响回路(包括皮质第4层、第6层)并具有足以产生明显的回响的强投射时,意识才可能存在。

2019-03-04 21:30:06

更加哲学性的问题又怎样呢?我确信当我们完全理解了意识的神经机制时,这些知识将回答两个重要问题:意识的一般本质是什么?进而使我们可以有意义地谈论其他动物的意识的本质,以及人造机器(如计算机)的意识。意识给有机体带来了哪些好处,从而我们可以发现为什么会有意识。最终或许会发现,视觉觉知的出现是因为它的详细信息需要发送到脑的若干不同区域。把这些信息彻底明晰化可能比把它们以隐含的方式沿着不同的通道传递更有效。具有一个单独的清晰的表象也可以防止脑的一部分使用对视觉场景的一种解释而同时另一部分使用另一种相当不同的解释。当信息仅需要被送到一个地方时,它会按照经验而不必有意识便可以到达那里。

第十八章 克里克博士的礼拜天

2019-03-04 21:41:31

毕竟,我们高度发达的脑仅仅能使我们足够机敏地生存和繁衍后代,它不是为了发现科学事实而不断进化的。

关于“自由意志”的跋

2019-03-04 21:45:57

我的第一个假设是:人脑的某个部分与制定进一步行动的计划有关,但不一定执行它。我也假定人可以意识到这个计划,即,至少可以直接回忆起来。

我的第二个假设是:人不能意识到这部分脑所执行的“计算”过程,而只知道它作出的最终“决定”,也就是计划。当然,这些计算将依赖于这一部分大脑的结构(部分由于进化,部分由于过去的经验),也取决于来自脑其他部分的当时输入。

我的第三个假定是:执行这个计划或那个计划的决定受到同样的限制。换句话说,人可以直接回忆起决定是什么,但不知道作出这个决定的计算过程,即使可能知道一个计划在进行中。

于是,如果这种机器(这是我信中使用的字眼)能像人一样决定自己的行为,即有一个“自身”的映象,那么这种机器看来具有“自由意志”了。

决策的实际起因可能是十分清楚的(帕特丽夏添加的),即:可能是决定性的但却是混沌的。一个非常小的扰动可能造成最终结果的巨大差异。由于这一点,输出结果在本质上成为不可预测,所以,使得“意志”看起来似乎是“自由”的。当然,意识活动也可能影响决策机制(帕特丽夏附加的)。

这样一种机器能够试着解释自己为何作出某种选择(运用内省法)。有时会达到正确的结论。而在另一些时候,它将不知不觉,或者更可能进行虚谈,因为它没有意识到作出选择的理由。这意味着一定存在着一种虚谈的机制,只要给出一定量的证据,不管它们是否会产生误导,脑的某部分总会得出一个最简单的结论。正如我们已经看到的,这一切太容易发生了。

这就是我的自由意志的理论。显然,它依赖于对意识的理解(这是本书的主要议题)、大脑是如何计划(和执行)行为的以及我们如何进行虚谈,等等。

2019-03-04 21:48:10

我想知道“自由意志”可能位于脑的哪个部位。显然,“意识”牵涉到大脑几部分的相互作用,但是,大脑皮质的某个特殊部位应当与其有种特别关系,这个想法不是不合理的。人们可能期望,这部分接收来自感觉系统高级水平的输出,又要馈送到运动系统的高级计划水平。

在这一点上,我偶然找到了一个有利于我的理论的证据,这就是安东尼奥·达马西欧(Antonio Damasio)及其同事关于一位大脑受损妇女的病例的描述[1]。她受损伤后,表现出对事物没有反应。她一声不响地躺在床上,脸上带着警惕的表情。她能用眼睛追随别人,但不能自觉地与人讲话。她对任何提问都不回答,虽然看起来她是理解这些问题的。她只是用点头加以答复。她用极慢的语调能重复词汇和一些句子。总之,她的反应极其有限,又总是一成不变。

一个月以后她得到很大程度的康复。她说她以前不能交流,并不感到不安。她能跟上交谈,但她感到“没有什么可说的”而不开口,她的头脑是“空”的。我马上想到“她失去了意志”!那么,大脑的什么部分受损呢?文献中指出,受损部位靠近波罗德曼(Brodmann)区的24区,在一个叫做“前扣带回”的地方。如果大脑被一切为二,它就位于上顶部的内表面上。我高兴地得知,这部分接收许多来自高级感觉区的输入,又在靠近运动系统的高级水平。

索尔克研究所的特里·塞吉诺斯基小组在工作周内有多次午茶会。这是讨论最新实验结果的理想场合,比如提出一些新的想法,或者只是关于科学、政策和一般新闻的闲聊。我曾参加过一次午茶会,并对帕特丽夏和塞吉诺斯基说,我已经发现了“意志”的部位!它就在“前扣带回”上及它的附近。当我与达马西欧讨论此问题时,我发现他也有类似的想法。他帮助我补充有关这部分脑区的解剖学上的联系。它与大脑另一侧的对应部分有极强的联系——正如我们所知,尽管裂脑人有两个独立的“意志”(见第十二章),而我们正常情况下只能有单个“意志”在起作用。再则,大脑一侧的这一区域有极强的投射到两侧的胼胝体(运动神经系统的重要部分),这也正是我们从单一意志当中所要预料的结果。的确,这一切看来十分理想。

过了一段时间,我读了一篇迈克尔·波斯纳(MichaelPosner)写的文章。在论文中他也提到了一种罕见的病症,由于一种特殊类型的脑损伤引起的“异己手”症。例如,患者的左手可以活动,做一些十分简单的、刻板的动作,但他却拒绝对此手负责[2]。例如,此手可能自发地抓住放在近旁的某个东西,但有的时候却不能把它放下,不得不用右手把它从东西上拿开。有一位患者发现,他不能用他的意志力使“异己手”放开物体,但如果大声地喊“放开!”,也许它会把抓住的东西松开。

那么“异己手”症是什么部位受损呢?又是靠近或正好在前扣带回上(如果“异己手”为左手,那么损伤位于右脑),也可能是胼胝体的相应部分受损,以至于左侧区域发出指令不能到达由受损的右边区域控制的左手。再则,正如第八章提到的,某种选择性过程前扣带回处于活动状态,这可以从这部分血流增加上看出。

“自由意志”位于或靠近大脑的前扣带裂上,这一想法可能有点新意。实际上,事情可能会更复杂。脑前区的其他部位也可能与其有关联。需要的是更多的动物实验、“异己手”和有关病例的仔细研究,其中首要的是,对视觉意识的神经生物学有更多的了解,并由此增加对其他形式的意识行为的了解。这也是把这些建议附在本书末尾的原因。

续读书目

2019-03-04 21:50:03

Penrose, Roger. The Emperor's New Mind. Oxford University Press, 1989.

Penrose是一位著名的数学家和理论物理学家。他相信大脑实现的过程不是图灵计算机所执行的计算。他认为物理是不完整的,因为还没有量子引力理论。他希望一个合适的量子引力理论能够揭示意识的奥秘,但也不太清楚怎样去做。最后,他确信量子引力是神秘的,意识也是神秘的,如果用一个来解释另一个,那不就很完美了吗?这本书的大部分涉及图灵机、戈德尔(Gödel)定律、量子理论及时间之箭,所有这些都解释得非常透彻和清晰。有关脑的特性占很少部分,尤其没有提及心理学。Penrose是一位柏拉图主义者,这种观点并不合每个人的胃口。如果他的主要观点能被证实,那将是惊人的。

注:皇帝新脑

多看笔记 来自多看阅读 for iOS

duokanbookid:a9d7087c37be49f3a6704bfcca81eeac



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有