测度论笔记 02 您所在的位置:网站首页 证明sigma代数对可数交封闭 测度论笔记 02

测度论笔记 02

2024-04-13 12:03| 来源: 网络整理| 查看: 265

  本文章应该没啥详细的讲解,主要就是记一下自己的理解,如有错误欢迎评论指正

~( ̄▽ ̄~)

幂集

  对于集合 X,定义它的幂集 P(X)%20%3A%3D%20%5C%7B%20x%20%7C%20%5Cforall%20x%20%5Csubseteq%20X%20%5C%7D,即所有子集的集合,幂集也会记为 2%5E%7BX%7D

π-system(π系)

  对于非空集合 X,若 %5Cmathscr%7BS%7D%20%5Csubset%20P(X) 满足:

%5Cmathscr%7BS%7D%20%5Cneq%20%5Cvarnothing;(非空)

%5Cforall%20A%2C%20B%20%5Cin%20%5Cmathscr%7BS%7D,有 A%20%5Ccap%20B%20%5Cin%20%5Cmathscr%7BS%7D.(对于任意交运算封闭)

则称 %5Cmathscr%7BS%7D 为 X 的一个 π-system.

λ-system(Dynkin system, λ系)

  对于非空集合 X,若 %5Cmathscr%7BS%7D%20%5Csubset%20P(X) 满足:

X%20%5Cin%20%5Cmathscr%7BS%7D;(包含全集)

%5Cforall%20A%2C%20B%20%5Cin%20%5Cmathscr%7BS%7D%EF%BC%8CB%20%5Csubseteq%20A,有 A%20-%20B%20%5Cin%20%5Cmathscr%7BS%7D;(对真差封闭)

对于非降的集合序列 %5C%7BA_%7Bn%7D%20%5Cin%20%5Cmathscr%7BS%7D%2C%20n%3D1%2C%202%2C...%5C%7D,有:%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bn%7D%20%5Cin%20%5Cmathscr%7BS%7D.(对于可列个非降的并封闭)

则称 %5Cmathscr%7BS%7D 为 X 的一个 λ-system.

  λ-system对(可列个非降的)交也封闭:设 A%20%5Ccup%20B%2C%5C%20A%20-%20B%2C%5C%20B%20-%20A%20%5Cin%20%5Cmathscr%7BS%7D,则交可以表为: A%20%5Ccap%20B%20%3D%20(A%20%5Ccup%20B)%20-%20%5B(A%20-%20B)%20%5Ccup%20(B%20-%20A)%20%20%5D,证明的话画个图证明最省事,要严格证明挺麻烦的,虽然看似这样定义的交对任意俩元素都成立,但因为λ-system对并有条件,所以也不是任意俩交都有定义;λ-system对补也是封闭的,可以定义 %5Cforall%20A%20%5Cin%20%5Cmathscr%7BS%7D%2CA%5E%7Bc%7D%20%3D%20X%20-%20A%20%5Cin%20%5Cmathscr%7BS%7D

  若在λ-system中取一组非增的集合序列 %5C%7BA_%7Bn%7D%20%5Cin%20%5Cmathscr%7BS%7D%2C%20n%3D1%2C%202%2C...%5C%7D,则可以定义它们的极限 %5Clim_%7Bn%5Cto%5Cinfty%7DA_%7Bn%7D%0A%3D%20%5Cbigcap_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bn%7D%20%0A%3D%20%5Cleft%5C%7B%20%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7DA_%7Bn%7D%5E%7Bc%7D%20%5Cright%5C%7D%5E%7Bc%7D%20%5Cin%20%5Cmathscr%7BS%7D,(用德·摩根律即可证明,)故对于λ-system中的任意单调序列均有极限 %5Clim_%7Bn%5Cto%5Cinfty%7DA_%7Bn%7D%20%5Cin%20%5Cmathscr%7BS%7D

σ代数(σ域)

  对于非空集合 X,若 %5Cmathscr%7BA%7D%20%5Csubset%20P(X) 满足:

X%20%5Cin%20%5Cmathscr%7BA%7D

%5Cforall%20A%20%5Cin%20%5Cmathscr%7BA%7D%2C%20A%5E%7Bc%7D%20%5Cin%20%5Cmathscr%7BA%7D.(对补集封闭)

A_%7Bn%7D%20%5Cin%20%5Cmathscr%7BA%7D%2C%20n%3D1%2C%202%2C... 是一族集合,有:%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bn%7D%20%5Cin%20%5Cmathscr%7BA%7D.(对于可列个并封闭)

则称 %5Cmathscr%7BA%7D%20 为 X 的一个σ代数,称 (X%2C%20%5Cmathscr%7BA%7D) 为可测空间,显然幂集是一个σ代数.

  σ代数对可列个交也是封闭的,因为 %5Cbigcap_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bn%7D%20%0A%3D%20%5Cleft%5C%7B%20%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bn%7D%5E%7Bc%7D%20%5Cright%5C%7D%5E%7Bc%7D%20%5Cin%20%5Cmathscr%7BA%7D,σ代数对差也是封闭的,因为 %5Cforall%20A%2C%20B%20%5Cin%20%5Cmathscr%7BA%7DA%20-%20B%20%3D%20A%20%5Ccap%20B%5E%7Bc%7D,所以σ代数一定是λ-system,σ代数也一定是π-system.

  一个既是π-system又是λ-system的 %5Cmathscr%7BA%7D%20 一定是σ代数.

证明:因为 %5Cmathscr%7BA%7D%20 是λ-system,其显然满足:1.X%20%5Cin%20%5Cmathscr%7BA%7D%20;2.%5Cforall%20A%20%5Cin%20%5Cmathscr%7BA%7D, A%5E%7Bc%7D%20%3D%20X%20-%20A%20%5Cin%20%5Cmathscr%7BA%7D,且任意单调序列都会有极限 %5Clim_%7Bn%5Cto%5Cinfty%7DA_%7Bn%7D%20%5Cin%20%5Cmathscr%7BA%7D,又因为 %5Cmathscr%7BA%7D%20 是π-system,所以其对于有限个并也是封闭的 %5Cbigcup_%7Bm%3D1%7D%5E%7Bn%7D%20A_%7Bm%7D%20%0A%3D%20%5Cleft%5C%7B%20%5Cbigcap_%7Bm%3D1%7D%5E%7Bn%7D%20A_%7Bm%7D%5E%7Bc%7D%20%5Cright%5C%7D%5E%7Bc%7D%20%5Cin%20%5Cmathscr%7BA%7D%2C%0An%3D1%2C2%2C...,现在,取可列个 %5C%7BA_%7Bn%7D%2C%20n%3D1%2C2%2C...%5C%7D,则他们的并可以写成[有限个并的(可列个并)]:%5Cbigcup_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bm%7D%20%0A%3D%20%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cbigcup_%7Bm%3Dn%7D%5E%7Bn%7D%20A_%7Bm%7D,而又其中"有限个并"整体是单调非降的,则对这个整体的"可列个并"可以看作是单调序列的极限,而又因为 %5Cmathscr%7BA%7D 中的单调序列一定有极限,故%5Cbigcup_%7Bm%3D1%7D%5E%7B%5Cinfty%7D%20A_%7Bm%7D%20%0A%3D%20%5Cbigcup_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cbigcup_%7Bm%3Dn%7D%5E%7Bn%7D%20A_%7Bm%7D%0A%3D%20%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cbigcup_%7Bm%3D1%7D%5E%7Bn%7DA_%7Bn%7D%20%5Cin%20%5Cmathscr%7BA%7D,即其对可列并封闭,证毕.

最小σ代数

  对于任意非空集合族 %5Cmathscr%7BS%7D,一定存在唯一的σ代数满足 %5Cmathscr%7BA%7D 满足:

%5Cmathscr%7BS%7D%20%5Csubset%20%5Cmathscr%7BA%7D

对任意满足 %5Cmathscr%7BS%7D%20%5Csubset%20%5Cmathscr%7BA'%7D 的σ代数 %5Cmathscr%7BA'%7D 都有 %5Cmathscr%7BA%7D%20%5Csubset%20%5Cmathscr%7BA'%7D.(其它满足1的σ代数都一定包含 %5Cmathscr%7BA%7D,也就是 %5Cmathscr%7BA%7D 是最小的)

称 %5Cmathscr%7BA%7D 为由 %5Cmathscr%7BS%7D 给出(生成)的最小σ代数,记为 %5Cmathscr%7BA%7D%20%5Cequiv%20%5Csigma(%5Cmathscr%7BS%7D)

存在性证明:我们可以取幂集 P(%5Cmathscr%7BS%7D),显然幂集是σ代数,故一定存在至少一个包含 %5Cmathscr%7BS%7D 的σ代数,记幂集中包含 %5Cmathscr%7BS%7D 的部分为 %5Cmathscr%7BA'%7D,取 %5Cmathscr%7BA%7D%20%3D%20%0A%5Cbigcap%20%5Cmathscr%7BA'%7D,则 %5Cmathscr%7BA%7D 也是σ代数,且 %5Cmathscr%7BS%7D%20%5Csubset%20%5Cmathscr%7BA%7D%20,如此定义的 %5Cmathscr%7BA%7D 就满足1和2;唯一性证明:假设唯一性不成立,即存在 %5Cmathscr%7BA%7D_%7B1%7D%2C%20%5Cmathscr%7BA_%7B2%7D%7D,且 %5Cmathscr%7BA%7D_%7B1%7D%20%5Cneq%20%5Cmathscr%7BA%7D_%7B2%7D,分别满足条件1和2,此时令 %5Cmathscr%7BA%7D%20%3D%20%5Cmathscr%7BA%7D_%7B1%7D%20%5Ccap%20%5Cmathscr%7BA%7D_%7B2%7D,则 %5Cmathscr%7BA%7D 是σ代数且 %5Cmathscr%7BS%7D%20%5Csubset%20%5Cmathscr%7BA%7D%20%5Cmathscr%7BA%7D%20%5Csubsetneqq%20%5Cmathscr%7BA%7D_%7B1%7D,故与2矛盾(找到了个更小的).

Borel 集

  对于拓扑空间 (X%2C%20%5Cmathscr%7BT%7D),定义的Borel集为:

%5Cmathscr%7BB%7D%20%3A%3D%20%5Csigma(%5Cmathscr%7BT%7D)

即由开集族所生成的最小σ代数,测度论中通常会使用定义在实数域上的Borel集.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有