蚁群算法 您所在的位置:网站首页 蚁群算法流程 蚁群算法

蚁群算法

2024-05-08 15:52| 来源: 网络整理| 查看: 265

                   蚁群算法 蚁群算法是一种用来寻找优化路径的概率型算法。它由Marco Dorigo于1992年提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。

 

蚁群算法的基本原理

1、蚂蚁在路径上释放信息素。

2、碰到还没走过的路口,就随机挑选一条路走。同时,释放与路径长度有关的信息素。

3、信息素浓度与路径长度成反比。后来的蚂蚁再次碰到该路口时,就选择信息素浓度较高路径。

4、最优路径上的信息素浓度越来越大。

5、最终蚁群找到最优寻食路径。

 

 

 蚁群走过较短的那一侧的蚂蚁数数量会多于较长那一侧的,所以留下的信息素就会多,渐渐的蚂蚁就只走较短的那一侧了。

 

蚁群算法对TSP的求解主要有两大步骤:(TSP问题就是要找到最短哈密尔顿回路) 1、路径构建 AS中的随机比例规则;对于每只蚂蚁k,路径记忆向量R^k.按照访问顺序记录了所有k已经经过的城市序号。设蚂蚁k当前所在城市为i,则其选择城市j作为下一个访问对象的概率为:

 

 

2、信息素更新

 

这里m是蚂蚁个数, ρ是信息素的蒸发率,规定0≤ ρ≤1,在AS中通常设置为 ρ =0.5,Δτij是第k只蚂蚁在它经过的边上释放的信息素量,它等于蚂蚁k本轮构建路径长度的倒数。C^k表示路径长度,它是R^k中所有边的长度和。 构建图:构建图与问题描述图是一致的,成份的集合C对应着点的集合(即:C=N),连接对应着边的集合(即L=A),且每一条边都带有一个权值,代表点i和j之间的距离。 约束条件:所有城市都要被访问且每个城市最多只能被访问一次。 信息素和启发式信息:TSP 问题中的信息素表示在访问城市i后直接访问城市j的期望度。启发式信息值一般与城市i和城市j的距离成反比。 解的构建:每只蚂蚁最初都从随机选择出来的城市出发,每经过一次迭代蚂蚁就向解中添加一个还没有访问过的城市。当所有城市都被蚂蚁访问过之后,解的构建就终止。  

 

 

蚁群算法存在缺陷:

蚁群算法在解决小规模TSP问题是勉强能用,稍加时间就能发现最优解,但是若问题规模很大,蚁群算法的性能会极低,甚至卡死。所以可以进行改进,例如精英蚂蚁系统。

精英蚂蚁系统是对基础蚁群算法的一次改进,它在原AS信息素更新原则的基础上增加了一个对至今最优路径的强化手段。在每轮信息素更新完毕后,搜索到至今最优路径的那只蚂蚁将会为这条路径添加额外的信息素。精英蚂蚁系统引入 这种额外的信息素强化手段有助于更好的引导蚂蚁搜索的偏向,使算法更快收敛

 

 

 

 

针对不同影响因素进行测试

m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子

蚂蚁数量50,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在40次左右收束

 

 

m = 50; % 蚂蚁数量alpha = 0.5; % 信息素重要程度因子beta = 10; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子

 

蚂蚁数量50,信息素重要程度因子0.5,启发函数重要程度因子10, 信息素挥发因子0.1在迭代次数在15次左右收束 ,大幅减少迭代次数(降低了信息素,增加了启发函数重要程度因子)

 

 

m = 50; % 蚂蚁数量alpha = 0.1; % 信息素重要程度因子beta = 10; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子

 

 

蚂蚁数量50,信息素重要程度因子0.1,启发函数重要程度因子10, 信息素挥发因子0.1在迭代次数在60次左右收束 ,迭代次数不减反增,可见信息素重要程度因子不能过小

 

m = 50; % 蚂蚁数量alpha = 0.1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子

 

蚂蚁数量50,信息素重要程度因子0.1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在55次左右收束,启发函数重要程度因子在超过一定数值后并不能有效降低,所以启发函数重要程度因子不宜超过5

 

m = 100; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.1; % 信息素挥发因子

 

 蚂蚁数量100,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.1在迭代次数在45次左右收束,增加蚁群数量后能一定程度上减少迭代次数,但是没有明显作用,且增加了运行时间成本,不建议过大。

 

m = 50; % 蚂蚁数量alpha = 1; % 信息素重要程度因子beta = 5; % 启发函数重要程度因子rho = 0.2; % 信息素挥发因子

 

 

 

 蚂蚁数量50,信息素重要程度因子1,启发函数重要程度因子5, 信息素挥发因子0.2在迭代次数在60次左右收束,信息素挥发因子在增大也没有更加明显的优化了,推荐0.1-0.2即可。

 

 蚁群算法代码

%% 旅行商问题(TSP)优化 %% 清空环境变量 clear all clc %% 导入数据 load citys_data.mat %% 计算城市间相互距离 fprintf('Computing Distance Matrix... \n'); n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else D(i,j) = 1e-4; end end end %% 初始化参数 fprintf('Initializing Parameters... \n'); m = 50; % 蚂蚁数量 alpha = 1; % 信息素重要程度因子 beta = 5; % 启发函数重要程度因子 rho = 0.2; % 信息素挥发因子 Q = 1; % 常系数 Eta = 1./D; % 启发函数 Tau = ones(n,n); % 信息素矩阵 Table = zeros(m,n); % 路径记录表 iter = 1; % 迭代次数初值 iter_max = 150; % 最大迭代次数 Route_best = zeros(iter_max,n); % 各代最佳路径 Length_best = zeros(iter_max,1); % 各代最佳路径的长度 Length_ave = zeros(iter_max,1); % 各代路径的平均长度 %% 迭代寻找最佳路径 figure; while iter = rand); target = allow(target_index(1)); Table(i,j) = target; end end % 计算各个蚂蚁的路径距离 Length = zeros(m,1); for i = 1:m Route = Table(i,:); for j = 1:(n - 1) Length(i) = Length(i) + D(Route(j),Route(j + 1)); end Length(i) = Length(i) + D(Route(n),Route(1)); end % 计算最短路径距离及平均距离 if iter == 1 [min_Length,min_index] = min(Length); Length_best(iter) = min_Length; Length_ave(iter) = mean(Length); Route_best(iter,:) = Table(min_index,:); else [min_Length,min_index] = min(Length); Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length); if Length_best(iter) == min_Length Route_best(iter,:) = Table(min_index,:); else Route_best(iter,:) = Route_best((iter-1),:); end end % 更新信息素 Delta_Tau = zeros(n,n); % 逐个蚂蚁计算 for i = 1:m % 逐个城市计算 for j = 1:(n - 1) Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i); end Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i); end Tau = (1-rho) * Tau + Delta_Tau; % 迭代次数加1,清空路径记录表 % figure; %最佳路径的迭代变化过程 [Shortest_Length,index] = min(Length_best(1:iter)); Shortest_Route = Route_best(index,:); plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); pause(0.3); iter = iter + 1; Table = zeros(m,n); % end end %% 结果显示 [Shortest_Length,index] = min(Length_best); Shortest_Route = Route_best(index,:); disp(['最短距离:' num2str(Shortest_Length)]); disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); %% 绘图 figure(1) plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-'); grid on for i = 1:size(citys,1) text(citys(i,1),citys(i,2),[' ' num2str(i)]); end text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点'); xlabel('城市位置横坐标') ylabel('城市位置纵坐标') title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2) plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:') legend('最短距离','平均距离') xlabel('迭代次数') ylabel('距离') title('各代最短距离与平均距离对比')

 

 

 

 总结

蚁群算法(AS)的缺点:

1、收敛速度慢(运行一次要等好久)

2、易于陷入局部最优

 

m -> 蚂蚁数量:

m数目越多,得到的最优解就越精确,但是会有蚂蚁重复路过同一城市,大量的重复增加了运行时间(100差不多了,运行好久)

 

alpha -> 信息素重要程度因子:

alpha值过大,蚂蚁选择之前走过的路径可能性就越大,蚁群搜索路径的随机性减弱。alpha值过小,蚁群搜索范围就会减少,易陷入局部最优解。(感觉1或者2就挺好)

beta -> 启发函数重要程度因子:

beta值增大,蚁群更容易选择局部较短路径,能加快算法的运行速度,但是可能陷入局部最优解(4或5就挺大的了)

 

rho -> 信息素挥发因子:

rho值初始设置为0.1,当rho很小的时候,每条路径的残留信息很多,会被反复搜索,增加运行时间。rho设置的很大的时候,会放弃搜索很多有效路径,可能会忽略最优值。

 

 



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有