AM@等价无穷小概念@原理@应用 您所在的位置:网站首页 等价无穷小替换原理 AM@等价无穷小概念@原理@应用

AM@等价无穷小概念@原理@应用

2024-07-14 02:39| 来源: 网络整理| 查看: 265

设 α ∼ α ~ \alpha\sim{\widetilde{\alpha}} α∼α , β ∼ β ~ \beta\sim{\widetilde{\beta}} β∼β ​,且 lim ⁡ β ~ α ~ \lim\frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β ​​存在,则 lim ⁡ β α \lim\frac{\beta}{\alpha} limαβ​= lim ⁡ β ~ α ~ \lim\frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β ​​= A A A

其中 α ~ \widetilde{\alpha} α 和表示和 α \alpha α成等价无穷小关系的某个无穷小,两者可能相等 β ~ \widetilde{\beta} β ​和 β \beta β类似含义事实上, lim ⁡ β α \lim\frac{\beta}{\alpha} limαβ​= lim ⁡ β ~ α ~ \lim\frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β ​​= lim ⁡ β ~ α \lim\frac{\widetilde{\beta}}{{\alpha}} limαβ ​​= lim ⁡ β α ~ \lim\frac{{\beta}}{\widetilde{\alpha}} limα β​= A A A

证明: lim ⁡ β α \lim\frac{\beta}{\alpha} limαβ​= lim ⁡ ( β α ~ ⋅ β ~ α ~ ⋅ α ~ α ) \lim(\frac{{\beta}}{\widetilde{\alpha}}\cdot\frac{\widetilde{\beta}}{\widetilde{\alpha}}\cdot{\frac{\widetilde{\alpha}}{{\alpha}}}) lim(α β​⋅α β ​​⋅αα ​)= lim ⁡ β α ~ \lim\frac{{\beta}}{\widetilde{\alpha}} limα β​ ⋅ \cdot ⋅ lim ⁡ β ~ α ~ \lim\frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β ​​ ⋅ \cdot ⋅ lim ⁡ α ~ α \lim{\frac{\widetilde{\alpha}}{{\alpha}}} limαα ​= 1 × lim ⁡ β ~ α ~ × 1 1\times{\lim\frac{\widetilde{\beta}}{\widetilde{\alpha}}}\times{1} 1×limα β ​​×1= lim ⁡ β ~ α ~ \lim\frac{\widetilde{\beta}}{\widetilde{\alpha}} limα β ​​

定理表明,求两个无穷小之比的极限时,分子和分母都可以用等价无穷小代替

适当的代替无穷小,可以这类极限计算问题得到简化

但要注意,等价无穷小的应用时有严格要求的,要特别注意自变量的变化过程,而不是单看分子分母解析式

例如: A = lim ⁡ x → 0 tan ⁡ 2 x sin ⁡ 5 x A=\lim\limits_{x\to{0}}\frac{\tan{2x}}{\sin{5x}} A=x→0lim​sin5xtan2x​

首先判断该极限是一个无穷小之比极限问题,可以考虑等价无穷小化简因为 tan ⁡ 2 x ∼ 2 x \tan{2x}\sim{2x} tan2x∼2x, sin ⁡ 5 x ∼ 5 x \sin{5x}\sim{5x} sin5x∼5x,所以 A = lim ⁡ x → 0 2 x 5 x A=\lim\limits_{x\to{0}}\frac{2x}{5x} A=x→0lim​5x2x​= 2 5 \frac{2}{5} 52​


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有