【综述】对颅神经和颅底的​新的和先进的磁共振成像诊断成像技术评估​ 您所在的位置:网站首页 磁共振扫描颅脑会不会有错建议增强扫码进一步分析 【综述】对颅神经和颅底的​新的和先进的磁共振成像诊断成像技术评估​

【综述】对颅神经和颅底的​新的和先进的磁共振成像诊断成像技术评估​

2024-07-16 05:01| 来源: 网络整理| 查看: 265

DTI和DTT在颅神经成像中的真实世界应用取决于多种因素(见表1),因此需要认识到其局限性;例如,小口径结构,如外展神经、滑车神经和后组颅神经细根(abducens, trochlear, and lower cranial nerve rootlets,),可能由于脑脊液搏动引起的部分容积效应而看不到(be invisible because of partial volume effects caused by CSF pulsation)。此外,体素尺寸的减小和弥散方向数量的增加受到信噪比减小、涡流产生增加和牵连运动(由扫描时间引起)的限制(reductions in voxel size and increases in the number of diffusion directions are limited by reductions in SNR, increased eddy current generation, and bulk motion (caused by scanning time)。变化也可以通过感兴趣区域(ROI)的布局(依赖于准确的协同配准和颅神经解剖的先验知识)和数值阈值(Variations can also be introduced by region of interest (ROI) placement (reliant on accurate coregistration and a priori knowledge of cranial nerve anatomy) and numerical thresholds (such as FA and curvature; see Box 1).)(如部分各向异性[FA]和曲率[curvature];参见Box1)。部分各向异性(FA)阈值可以有系统的方式改变,但这个过程很耗时。因此,全脑干DTT技术在未来可能被证明是有用的,因为它们省去了人工放置感兴趣区域(ROI)。一个最佳的纤维束示踪成像算法也还没有定义,而且,虽然概率技术可能更优越(见表1),先进的确定性技术已经显示出希望。尽管仍然存在重大挑战,但压缩感知技术和使用人工智能(AI)驱动的自动化的增加,很可能促进未来颅神经纤维束示踪成像临床成像工作流程的整合(Although significant challenges remain, increased use of comspanssed-sensing techniques as well as artificial intelligence (AI) driven automation are likely to facilitate the future integration of cranial nerve tractography clinical imaging workflows.)。

颅孔段(Magnetic resonance neurography)

由于血管和骨结构的并置(the juxtaposition of vascular and osseous structures),通过颅孔的神经结构的成像常常在技术上具有挑战性。通过观察未增强的神经与强化的血液相对比,可以发现伴有如颈静脉孔、海绵窦或Dorellos管等较大静脉间隔的颅孔内个别颅神经(The detection of individual cranial nerves within foramina with a large venous compartment, such as the jugular foramen, cavernous sinus, or Dorellos canal, can be achieved through the visualization of nonenhancing nerves contrasted against the enhancing blood.)。所谓的白血3D T1加权钆剂后梯度回波技术(white blood 3D T1-weighted postgadolinium gradient echo techniques),如容积内插脑检查-磁化准备快速梯度回波(volumetric interpolated brain examination magnetization-spanpared rapid gradient echo,MP-RAGE),或对比增强稳态成像(contrast-enhanced steady-state imaging),如稳态建设性干扰(constructive interference into steady state,CISS),已被证明是有用的。使用应用流量抑制技术(flowsupspanssion techniques),如变延迟进动定制激发(delay alternating with nutation for tailored excitation,DANTE),以及改进的运动敏化驱动平衡(improved motion-sensitized driven equilibrium,MSDE)的高分辨率黑血3D自旋回波对比后序列(high-resolution black-blood 3D spin-echo postcontrast sequences),可以更好地描述强化的颅神经病变。

颞内面神经具有长而复杂的骨内段,可以使用附加序列来增强神经和骨之间的对比。最近,在西门子系统上开发了一种平扫技术,即径向采集减少点编码时间(pointwise encoding time reduction with radial acquisition,PETRA)。它使用不到1毫秒的近零回波时间(TE)从T2极短的组织(如皮质骨)获取信号(a near-zero echo time (TE) of less than 1 millisecond to obtain signal from tissues with extremely short T2, such as cortical bone);此外,超短TE将磁化伪影减少到最低限度(the ultrashort TE minimizes susceptibility artifacts)。该技术可以显示岩骨内面神经的整个走行,这在常规序列上是不可能实现的(the entire course of the intrapetrous facial nerve)(图2)。类似地,黑骨MR成像使用质子密度加权扰相梯度回波容积序列,通过短TE/ TR和低翻转角优化来描述骨-软组织界面,并加以优化,以使软组织对比最小化,从而骨-软组织边界强化(black bone MR imaging uses a proton density–weighted spoiled gradient echo volumetric sequence that is optimized for delineating the bone–soft tissue interfaces by using a short TE/TR and low flip angle, and is optimized to minimize soft tissue contrast, thereby enhancing bone–soft tissue boundaries)。

图2。 PETRA(逐点编码时间减少与径向采集)超短-TE序列。 通过颞骨获得的PETRA序列的轴位(A)和冠状位(B)重建显示面神经的岩骨内走行(白色箭头)。 

颅孔外段(Extraforaminal segment)

磁共振神经成像(Magnetic resonance neurography)(MRN)术语已经被用于各种序列,包括(被单独考虑的)DTI,但更常见的是归因于一组序列,结合使用脂肪和流抑制,为了有选择地突出从颅外软组织内的神经结构信号。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有