浅谈花岗岩浆热液的形成及成矿作用 您所在的位置:网站首页 矿石微量元素 浅谈花岗岩浆热液的形成及成矿作用

浅谈花岗岩浆热液的形成及成矿作用

2024-07-14 18:53| 来源: 网络整理| 查看: 265

浅谈花岗岩浆热液的形成及成矿作用

刘鹏1),张德会1),吴鸣谦1),张继林2)

1) 中国地质大学(北京)地球科学与资源学院,北京,100083;2) 中国黄金集团资源有限公司,北京,100011

内容提要: 与花岗岩类有关的矿床主要是与其具有时—空及成因联系的岩浆—热液矿床,岩浆能否出溶热液且出溶相当数量热液是花岗岩类成矿的必要前提,直接制约岩浆岩的成矿潜力。基于前人和作者的研究成果得出,与成矿有关的花岗岩中发育的单向固结结构(UST结构)、石英眼、晶洞以及雪球结构等是岩浆挥发分相饱和出溶的标志,岩浆岩组成对于成矿潜力判别的贡献基于元素的地球化学行为以及物理化学条件,挥发组分中卤化物含量的高低和岩石中主量元素的丰度不能作为成矿潜力的判别标志,而微量元素是识别花岗岩类成矿潜力的地球化学指纹。高场强元素以及现出系统地球化学行为变化的稀土元素特征有望成为成矿潜力的最佳判别标志。花岗岩类含矿潜力的评价研究为岩浆热液多金属矿床的成矿预测和勘查评价提供理论指导,本文也指出在研究花岗岩含矿潜力中存在的一些问题及未来的研究方向。

关键词:岩浆热液矿床;花岗岩含矿性;出溶热液;UST结构;石英眼;雪球结构

花岗岩类,该术语最初是描述相似但组成不同的一类花岗岩,现在也用作花岗岩的同义词,即基本由石英、钾长石和/或斜长石组成的任何侵入岩(Le Maitre et al., 2005; 张德会, 2015)。花岗岩类是上地壳最为丰富的侵入岩(Clarke, 1992; 张德会, 2015),花岗质组成岩石占上部陆(地)壳体积约86%(Bonin, 2007)。研究花岗岩类更重要的意义是其与金属矿床的时—空及成因联系。自De Launay(1913)在金属成矿学领域所做的先驱性工作以来,大量研究已表明岩浆侵入体在矿石沉淀过程中起着积极的作用(Sillitoe, 1991; Thompson and Newberry, 2000; Lang and Baker., 2001; Cerny et al., 2005; Carr et al., 2008; 张德会, 2015)。张德会(2015)提出花岗岩类致使金属富集成矿的三个关键因素:能量效应、矿源效应和挥发分或流体效应,为成矿提供了驱动成矿作用进行所需的足够能量、成矿金属、挥发组分及成矿流体等。

目前,在全球范围内,根据元素选择性迁移活动相的性质构成的成矿作用,可将矿床类型大致分为岩浆矿床、热液矿床和表生矿床(Kesler, 1994; Heinrich and Candela., 2014)。其中,镁铁质和超镁铁质岩浆(溶解水量较少)很少能够产生大量的热液成矿流体,所以与碱性岩—超基性岩—基性岩有关的岩浆矿床比较稀少,如铬(铂)铁矿床、含钒钛磁铁矿矿床、铜镍硫化物矿床、铂族元素矿床和金刚石矿床等。由此可以看出,除一些沉积和变质矿床外,其他各类矿床(尤其金属矿床)的形成大多数与花岗岩类岩浆作用有关热液矿床的成矿作用密切相关,热液矿床占世界巨型矿床总数的63.5%(Laznicka, 1999)。之所以地球上绝大多数矿床的成矿作用与花岗岩关系密切,主要在于成矿花岗岩中富水(花岗岩富云母和闪石类富水矿物)能出熔成矿热液流体(Barton et al., 1991; 张德会, 2015)。岩浆热液成矿作用为我们创造了地球大陆上Cu、Mo、Sn、W、In和Re的主要资源,也是Au、Ag、Pb、Zn以及其他少量和稀有金属的重要来源。

一些侵入体与一定类型矿床之间的紧密生成联系已被勘探地质学家认识并应用了几十年,如钾质花岗岩与锡矿床、斜长岩中的钛铁矿、超镁铁质岩石中的铬铁矿以及镁铁质—超镁铁质岩石与铜镍硫化物矿床。类似地,有众多特定类型矿石的省份也是众所周知的,如东南亚的Sn矿石和美国西南部的斑岩Cu矿省。这种矿石与区域或岩石类型的成矿偏爱性(preferentially)被称为“含矿性/含矿潜力(productive)”,因此从某种意义上来说,在这些环境中进行勘探可能比在随机挑选区域进行勘探能更有效地发现新矿床(Rose et al., 1979)。阮天健等(1985)在勘查地球化学找矿中提出岩体含矿性问题,主要是指岩体内部或岩体周围,在空间上、成因上与之密切有关的某些矿床形成的可能性问题。Blevin(2004)提出4种评价岩浆与金属成矿关系的参数:氧化态、花岗岩组成(类型、SiO2和K2O含量、碱度)、组成的演化程度和是否存在分离结晶作用,这些参数是确定与含矿岩浆有关的岩浆热液成矿“气味或味道”(flavour)最有用的参数。

一些矿床(如斑岩矿床)通常是通过水系沉积物和大规模蚀变进行区域地球化学识别,但一些产在岩体内的Sn、W、U和稀有金属矿床等,不会产生较大范围的次生异常,地球化学勘查对此判别较弱,因此我们应该去研究潜在的成矿花岗岩(Govett, 1983)。研究表明,许多赋存大量具成矿潜力花岗岩的地区,真正能够成矿的花岗岩仅是其中的一小部分(张德会, 2015)。如何区别孕矿/有成矿潜力(fertile/productive)和无成矿潜力(barren/non productive)的侵入体,仍然是一个尚未解决但具有重要理论和实践意义的研究命题(Candela, 1991; Kelley et al., 2006)。本文在前人大量的研究成果基础之上,结合作者的研究成果,系统地阐述了通过地质学、岩石学以及地球化学的方法对岩浆岩特别是花岗岩类的成矿潜力进行判断,以为矿产勘查项目的顺利开展做出理性的指导。

1 岩浆热液的成矿作用

自然界主要有两大类流体:以SiO2为主体的硅酸盐熔体和以H2O为主体的水溶流体(热水溶液),而热水溶液是最重要的成矿流体,因为水具有普遍性、流动性、润湿性及作为极性物质溶剂等作用。热水溶液(简称热液),是一种热的含水溶液(50>500℃),包含有主要组分Na、K、Ca、Cl和微量组分Mg、B、S、Sr、CO2、H2S、NH4、Cu、Pb、Zn、Sn、Mo、Ag、Au等(Skinner, 1979)。热液矿床的形成不仅与地壳中大体积流体的产生密切相关,也与成矿流体通过地壳循环和聚焦进入变形过程中形成的构造通道(剪切带、角砾岩等)的能力密切相关(Audétat et al., 2003)。根据流体包裹体的研究,形成典型的多种多样岩浆热液矿床的成矿流体主要是体量有限但金属浓度极高的岩浆卤水(张德会, 2015)。

岩浆—热液矿床形成于地壳和地幔不同深度运行的多种过程中,制约岩浆热液矿床形成的主要因素包括上地壳岩浆房的形成、镁铁质和长英质岩浆的分离结晶作用、热水溶液从岩浆中出溶、低于岩浆固相线的流体—矿物相互作用、热水溶液进入有限体积空腔的聚焦、蒸气—卤水不混溶以及矿石矿物的沉淀等(Burnham, 1967, 1979, 1997; Ishihara and Takenouchi, 1980; Taylor and Strong, 1988; Whitney and Naldrett, 1989; Stein and Hannah, 1990; Hedenquist and Lowenstern, 1994; Hedenquist and Richards, 1998; Audétat et al., 2008),这些过程与岩浆—热液系统事件发生的大致序列相对应(从深到浅)。中酸性岩浆就位过程中的物理化学条件(温度、压力、盐度、酸度、氧逸度和挥发分等)和无处不在的流体组分(S、CO2、As)直接影响成矿金属元素的浓度、运移、沉淀和其在硅酸盐熔体相和流体相之间的分配,进而控制形成不同的金属矿床(陈光远等, 1993; 李鸿莉等, 2007; Vaughn and Ridley, 2014; Pokrovski et al., 2014)。

含矿岩体的矿石矿物主要是通过冷却、减压、与主岩的化学反应以及流体混合等过程而从热液流体中沉淀的(Seward and Barnes, 1997; Robb, 2005; 张德会, 2015)。岩浆—热液矿床形成的最大深度可能达到10 km(Skinner, 1997; Uchida et al., 2007)。在该深度以浅,尽管与主岩的流体混合和化学反应对成矿有一定的控制作用,但在许多情况下,无矿和矿化侵入体在相似的深度侵位、在相同岩性且邻近的位置形成,因此认为矿石沉淀阶段不是判别侵入体是否成矿的主要控制因素。然而,选择性金属沉淀必然对矿石的金属比率有很大影响,如Mole花岗岩形成的基本为纯Sn矿床(Henley et al., 1999),尽管Cu、Pb和Zn在输入流体中的浓度分别比Sn高出一个数量级。但选择性矿物沉淀不能是控制矿石金属比的唯一因素,因为对于一些元素,成矿母体水溶流体中金属含量与矿化类型之间呈正相关,如斑岩Cu矿床流体中Cu的含量高等。

流体不混溶和相关成矿金属的蒸汽—卤水间的分配主要通过以下方式影响成矿过程:① 流体沸腾、H2S的逸出及其他因素等直接使矿石发生沉淀;② 化学组成不同流体的物理分离过程导致系统规模的金属分带;③ 与氯络合的金属在残余卤水中积聚。其中,流体沸腾、H2S的逸出是浅成热液矿床和更深的造山型矿床中Au的有效沉淀机制,蒸气—卤水不混溶的物理过程可能不会直接导致金属发生沉淀,但可以造成金属在两相之间发生不同的分配,与氯络合的元素Pb、Zn、Fe、Mn、Ag、K分离进入卤水,S、Cu、As、Au、B则分离进入气相(Heinrich et al., 1999; Williams-Jones and Heinrich, 2005),因此两种流体相的物理分离可以导致空间上的金属分带,如富Cu蒸汽的逃逸导致Questa斑岩Mo矿床缺乏铜矿化(Klemm et al., 2008)。来自低密度母岩流体卤水的冷凝及其在深处的积聚可能是小体积岩石中集中氯络合金属的有效机制,增加了深成岩浆—热液系统矿床形成的机会。许多金属(Sn、W、Mo、REE,而非Cu和Au)在卤水中的溶解度比在蒸气中更高,并且卤水占据的体积小于相同质量的蒸汽,从而增加在小体积岩石中金属沉淀的可能性。卤水在Sn、W、Mo和REE矿床形成中发挥着中心作用,流体组成和矿化类型之间的相关性在卤水中比在低盐度流体中更大,但可能在斑岩Cu—(Au)矿床形成中起的作用不大。所以与蒸气—卤水不混溶相关的过程不是控制矿化潜力的唯一因素,这一过程只是在成矿早期阶段发挥了重要作用。

我们对岩浆到亚固相线条件这些过程的转变仍然知之甚少。在岩浆条件下稳定的矿物质可能会变得不稳定并转化为其他矿物质,导致矿物和溶解的含水流体之间的金属和配体的重新分配。选择性金属沉淀和流体不混溶性对亚固相线条件下流体的组成具有很大影响,但相当大部分岩浆流体的矿床特定金属性质是在较早阶段获得的(从岩浆结晶和/或较早阶段流体的出溶期间),该阶段是否会促进或降低矿化潜力仍有待确定。但由于该阶段在贫矿和矿化岩体中的发生程度相似,所以似乎不太可能对矿化潜力起到主要的控制作用。

流体聚焦是岩浆—热液成矿的关键过程,因为只有相对大量的流体在相对较小的岩石体积中沉淀金属矿物才能形成经济矿化。在各种尺度范围内都能发生流体聚焦,从千米范围大小岩枝到网脉状角砾岩中的毫米级裂隙。关于侵入体形状和水力压裂程度对矿化潜力影响的研究很少。Rehrig 和 Heidrick (1972)对比亚利桑那州的贫矿和矿化Laramide岩体,指出关键的结构上的差异是微小裂隙的强度和复杂性。但许多与云英岩和/或矽卡岩相关的侵入仅产生很少的脉,表明水力压裂对于矿床的形成并不是必需的,还需要做更多的工作来充分评估这方面的相对重要性。然而,即使流体聚焦至关重要,它可能也只影响矿床的大小和几何形状,并不影响矿床的类型。

综上所述,含矿与无矿侵入体的判别是一个非常复杂的科学问题,涉及到成矿作用从发生到最终沉淀富集的整个过程。Barton 等 (1991)指出岩浆形成矿床的能力主要取决于水的可获得性,“干”的侵入体不能传输和在局部聚集金属,即使它们富集某些元素。而微量元素含量异常的“湿”侵入体具有增强成矿潜力的特征。体系的湿度可以根据侵入体周围及上部蚀变晕的类型和强度及岩石的结构构造进行推断,包括根据钾长石和钠长石、石英、黑云母、绢云母、绿泥石和其他矿物为标志的热液蚀变晕特征来分析判断岩体的成矿潜力和含矿性(Laznicka, 2006)。黑云母和角闪石等含水矿物可以反映结晶过程中HF、HCl、O2、H2和H2O相对逸度的含水矿物(Wones and Eugster, 1965; Munoz, 1984; Brimhall et al., 1985; Ague and Brimhall, 1987, 1988; Mi and Pan Yuanming, 2018),能有效地记录成岩过程的物理化学条件之间变化,并可提供成岩物质来源、形成环境及成矿等方面的信息(Wones et al., 1965; 陈光远等, 1988; Feeley and Sharp, 1996; Ridolfi et al., 2009; Mi and Pan Yuanming, 2018)。与花岗岩类有关的矿床主要是与花岗岩类具有时—空和成因联系的热液矿床,因此岩浆能出溶热液且出溶相当数量热液成为制约花岗岩类成矿的必要前提,直接制约着岩浆岩的成矿潜力。

2 岩浆挥发分及其出溶

硅酸盐熔浆中含有许多挥发组分,是指那些偏向于集中在岩浆气相或超临界流体相的组成,可以影响岩浆形成和演化的各个方面(张德会, 2015)。早期研究表明岩浆挥发分相(Magmatic Volatile Phases, MVP)主要为H2O(Tuttle and Bowen, 1958),事实上,岩浆熔体中还有CO2、Cl、F、B、S等阴离子元素或化合物。虽然它们在岩浆中的含量不高,但却具有非常重要的作用。作为金属元素的络合物配位体,MVP对于金属的萃取迁移和最终的沉淀具有强烈的地球化学亲和力,具有流动性、渗透性和挥发性的MVP又是金属元素最佳的迁移介质,这些都使MVP成为金属元素富集成矿所必备的前提条件(Candela, 1997)。MVP的丰度及其从岩浆熔体中的出溶不仅控制着岩浆的分异程度和类型,也决定了熔体退聚合的水解作用,而熔体的解聚程度又决定了演化的岩浆熔体的组成(张德会, 2005)。通过元素在固相、熔体相和流体相之间的分配系数,MVP最终控制了成矿作用的发生和成矿元素的沉淀富集。

源岩性质和含水岩浆产生过程及其侵位对于岩浆热液成矿体系的形成至关重要,但在将成矿元素进一步浓集至可采经济矿床的岩浆结晶过程中,岩浆能否出溶分离一个富H2O的挥发分相是能否发生成矿作用的关键环节。当硅酸盐熔体中所有挥发性组分的联合浓度高于它们在特定温度、压力、熔体组成条件下的溶解度时,独立的富挥发分相自硅酸盐熔体中出溶的过程即可发生(De Vivo et al., 2005)。没有这一过程,伟晶岩矿床就不能形成(Jahns and Burnham, 1969),斑岩铜/钼和其它网脉状矿床的裂隙系统就不能发育,接触交代过程也不能奏效,许多由爆发式火山形成的矿石就位构造也不会存在(Burnham and Ohmoto, 1980)。因此流体从上地壳岩浆房中的饱和是大规模金属富集的一个关键步骤(Heinrich and Candela, 2014)。

韩国东南部Gyeongsang盆地赋存许多花岗岩类侵入体,但因剥蚀作用已经除去了高位的浅成斑岩铜矿化,出露了深部斑岩铜矿体系贫矿的矿化“根部带”(bottoms)花岗岩类。Yang 和 Bodnar(1994)对此类侵入体中的硅酸盐熔体和流体包裹体研究,花岗岩类不含经济斑岩铜矿化的原因是由于岩浆在高压(相对于典型斑岩铜矿的岩浆)下结晶,岩浆中的水没有达到饱和,直到结晶历史的较晚阶段流体才饱和。未达到水饱和导致初始熔体中的绝大多数铜被萃取作为微量元素进入早期结晶的硅酸盐和硫化物相中,形成异常但比经济品级铜矿的品位低。由于岩浆侵位深度大,当水自岩浆中出溶时释放的能量低难以引起岩石的破裂,而高的压力又不利于流体不混溶成为重要的浓集金属或沉淀机理。因此,岩浆饱和水是成矿作用发生的必要前提条件,但饱和水花岗岩浆的侵位并非意味着成矿作用必然发生。Audétat 和 Pettk(2003)对美国新墨西哥州两个无蚀变无矿化的侵入体(Rito del Medio和Canada Pinabete)的岩浆—热液演化过程进行了探讨,与矿化体系相比,无矿岩体在岩浆演化过程中挥发分达到了饱和并出溶了热液流体,但岩浆出溶流体的盐度过低,致使流体从熔体中萃取金属的效率低下。

图1 (a) 气体在硅酸盐熔体中的溶解度随压力而变化;(b) 熔体上升途径(据Gill,2010修改)Fig. 1 (a) Solubility of gases as a function of pressure in silicate melts; (b) Melt ascent path (modified from Gill, 2010)

通过花岗岩中的硅酸盐熔体和流体包裹体研究,确定了岩浆结晶过程的物理和化学环境特征。研究表明,花岗岩类不含经济斑岩铜矿化的原因是由于岩浆在高压(相对于典型斑岩铜矿的岩浆)下结晶,岩浆中的水没有达到饱和直到结晶历史的较晚阶段流体才饱和。未达到水饱和导致初始熔体中的绝大多数铜被萃取作为微量元素进入早期结晶的硅酸盐和硫化物相中,形成异常但比经济品级铜矿的品位低。由于岩浆侵位深度大,当水自岩浆中出溶时释放的能量低难以引起岩石的破裂,而高的压力又不利于流体不混溶成为重要的浓集金属或沉淀机理。这是韩国Gyeonsang盆地花岗岩无斑岩铜矿的原因所在。花岗岩代表了斑岩体系的根部带,任何可能存在于体系上部的高品位矿化如果有,也可能已被剥蚀作用除去(张德会, 2015)。

图2 辽宁省二道沟金矿床中的石泡流纹岩Fig. 2 Stone bubble rhyolite in Erdaogou gold deposit, Liaoning Province

岩浆中的水含量与压力呈正相关,岩浆形成深度愈大,其饱和水的含量愈高。熔体沿着减压途径上升直到它到达水饱和的深度为止,该深度和压力下熔体含有最大容量的溶解水,进一步的上升使得岩浆达到过饱和,熔体不再能够容纳的过量水将会出溶,开始出现独立的气相气泡。在熔体上升的过程中,由于气泡的成核(如晶体的成核)需要一定程度的过饱和,所以在饱和水平以上开始出现成泡化(图1,Gill, 2010)。在“气泡化带”之上,继续上升和减压导致现有气泡膨胀并形成新的气泡。如果我们把它想象成是一个半径均匀的通道,很容易看出这种气体驱动的膨胀不可避免地使岩浆加速向上(这是唯一可以进行膨胀的方向),有助于形成熔岩喷发。在喷发过程中大量的气体逃逸到大气圈,还有部分以蒸气泡形式被圈闭在岩浆中。随着熔体的继续上升,气泡生长和倍增,当熔岩固结时以近球形空洞保存在熔岩中,如辽宁省二道沟金矿床火山岩中发育的石泡流纹岩(图2)。由于高黏度的流纹岩岩浆阻止了气体的外泄,圈闭在熔体中形成大小不等的气泡,随后气体中的物质沿气泡壁沉淀形成石泡。石泡构造是酸性熔岩所具有的一种特殊杏仁体构造,也是岩浆挥发分饱和气体出溶的地质证据。

图3 花岗岩质岩浆中的一次沸腾和二次沸腾图解(据Vigneresse, 2007修改)Fig. 3 Cartoon illustrating the first and the second boiling in a granitic magma (modified after Vigneresse, 2007)

从岩浆中出溶热液流体的数量取决于岩浆的初始水含量、岩浆的侵位深度及结晶历史(Misra, 2000)。但岩浆中水的含量并非越高越有利于金属的萃取,有证据表明,水含量越高,水与其它元素的缔合效应就越弱(Cervantes and Wallace, 2003)。岩浆中水通过两种端元方式达到饱和(图3,Vigneresse, 2007):一次沸腾,因绝热减压(adiabatic decompression)造成岩浆中流体饱和而出溶流体的现象;二次沸腾,因等压冷却(isobaric cooling)使得残余熔浆中挥发分饱和而出溶流体的现象。而保留在岩浆中的水只有初始岩浆水量的约1%,这些水最终以羟基键存于云母和角闪石中(Burnham, 1967)。浅部岩浆达到水饱和要求的初始水量(7%)低于深部岩浆,所以侵位到地壳浅部的岩浆更容易出溶热液(Whitney, 1975)。基性岩浆在地壳深部释放大量水,到上部时几乎已变成脱水熔浆,而酸性岩浆主要在地壳上层释放所含有的水,酸性岩浆出溶水的深度与热液矿床多数形成于地壳浅部相一致。在地壳底部1MPa压力处,岩浆能溶解10%~15% H2O,长英质熔体溶解水量高于镁铁质熔体(Robb, 2005)。花岗岩类挥发分含量高,富水富挥发分岩浆能够侵位到地壳浅部并出溶热液,斑岩和潜火山岩具有出溶热液的先天优势,因而具有最佳的热液成矿潜力。

3 岩浆饱和与出溶挥发分的岩石组构证据

与无矿花岗岩相比,与成矿有关的花岗岩结构更为复杂(Candela, 1997)。在特定侵入体或多期侵入体内,除了正常的花岗结构(半自形粒状结构)外,还有斑状结构、细晶和伟晶岩域、晶洞、文象和显微文象结构、树枝状、针状和/或骸晶状晶体结构等(张德会, 2015)。其中,单向固结结构、石英眼、晶洞以及雪球结构等是岩浆挥发分相饱和出溶的标志,也是含晚期岩浆流体与熔体共存的岩浆—热液过渡阶段标志性结构。

3.1 单向固结结构(UST, Unidirectiona.Solidificatio.Texture)

Shannon 等 (1982)将冶金学中的单向固结结构(Flemings, 1974)这一术语引入地质学,以此解释许多与斑岩型Mo、W、Cu矿床有关长英质侵入体中常出现的一种特殊火成岩结构(Shannon et al., 1982; Kirkham and Sinclair, 1988; Lowenstern and Sinclair, 1996; 杨志明等, 2008; Qu Huanchun et al., 2016),最近在与Au矿床相关的一些侵入体中也有发现这种结构(Yang Zhiming et al., 2015; Qu Huanchun et al., 2016)。

单向固结结构是一种矿物生长形貌学上的标型结构,是指矿物从基体(substrate)向外呈单方向生长,呈被细晶岩或细晶斑岩分隔的板状层(tabular)(Shannon et al., 1982; 张德会, 2015)。UST结构是一个侵入体从外向内连续或近乎连续结晶过程中,产生矿物学、结构及组分分层而成的,通常产于侵入体顶部及边缘、以层和多层序列(厚几厘米至30多米)的形式出现(Shannon et al., 1982; Kirkham and Sinclair, 1988; Lowenstern and Sinclair, 1996; Kirwin and Seltmann, 2002; 杨志明等, 2008)。根据形貌特征可将UST分为四种主要类型:① 细褶皱层(Shannon et al., 1982; Carten et al., 1988);② 树枝状层(Shannon et al., 1982; Carten et al., 1988);③ 交互生长层(Shannon et al., 1982);④ 梳状石英层(Moore and Lockwood, 1973; Stewart, 1983; Shaver, 1984a, b; Kirkham and Sinclair, 1988; 张德会, 2015)。

图4 (a) 河南栾川南泥湖斑岩钼矿岩浆岩中发育的UST结构——细褶皱层;(b) 湖南黄沙坪铅锌矿床含矿304花岗斑岩岩体的UST结构——脑岩Fig. 4 (a) UST——crenulate layers developed in magmatic rocks of the Nannihu porphyry molybdenum deposit, Luanchuan, Henan; (b) UST——brain rock developed in 304 granite porphyry rock mass in the Huangshaping lead—zinc deposit, HunanQz—石英;Kfs—钾长石Qz—Quartz; Kfs—K-feldspar

细褶皱层(Crenulate Layers)是指层内单个矿物展示出自形晶的形貌。这些层由一种或多种矿物组成,主要为石英和/或碱性长石(图4a),局部可见微量(多达5%)的萤石、黑云母、金红石、铌铁金红石(富Nb金红石)、稀土氧化物矿物、锆石、榍石及很少的辉钼矿等副矿物。其中,一种呈韵律状的、狭窄的(0.5~5.0 mm)细褶皱石英层,因具有类似脑结构特征的卷曲或旋转外观而被称为脑岩(Brain Rock)(图4b),该结构曾被称为“条纹岩(Ribbon Rock)”(Wallace et al., 1978; 张德会, 2015)。

树枝状层(Dendritic Layers)是指石英和碱性长石晶体产在与侵入体接触带近于平行的连续层内。它们一般与细褶皱层伴生,树枝状层结构在体积上一般没有细褶皱层那样的规模。层的厚度从几毫米到1 m。生长于细晶岩基质之上的单个分支晶体长度从几毫米到10.0 cm。主要的树枝状分支总是向着侵入体中心分叉。

交互生长层(Intergrowth layers),指石英和碱性长石呈交互状共生,构成厚几毫米到几厘米的层。其中一些交互层又与细褶皱层和树枝状层呈互层状分布。石英和碱性长石的交生通常坐落在隐晶质到细晶质的基质上。树枝状交互生长的特征在于碱性长石和石英同时结晶,两者都具有树枝状形态。树枝状交互生长局部上显示石英枝晶沿分支的碱长石的一侧不对称生长。

Kirkham 和 Sinclair(1988)提出梳状石英层(Comb Quartz Layers, CQL)术语,指出花岗岩中的梳状石英层与热液矿脉的梳状结构类似,都是由近似垂直于岩层和/或矿脉或岩墙壁的定向晶体所组成。长英质侵入体中CQL和矿脉中梳状矿物可能都是从水溶流体而非硅酸盐熔体中结晶的(Moore and Lockwood, 1973; Stewart, 1983; Shaver, 1984a, b; Kirkham and Sinclair, 1988; 张德会, 2015),但低温矿脉中梳状石英与长英质侵入体中CQL成因还是存在显著的差异。与斑岩型矿床伴生的长英质侵入体中的梳状石英层还被称为条纹带状构造、韵律带状构造、肠状脉(Ptygmatic)(图5a)、蚯蚓脉(Wormy)、脉状岩墙(Vein dyke)等。

图5 (a) 辽宁二道沟金矿床正长斑岩中发育的UST结构——肠状脉;(b) 湖南黄沙坪铅锌矿床含矿花岗斑岩中的石英眼Fig. 5 (a) UST——ptygmatic developed in the syenite porphyry in the Erdaogou gold deposit, Liaoning; (b) Quartz eye in ore-bearing granite porphyry from Huangshaping lead—zinc deposit, Hunan

3.2 石英眼(Quart.Eyes)

石英眼是指那些赋存于与成矿有关的斑岩岩墙或岩脉中的圆形、次圆形及椭圆形的石英巨斑(quartz megacrysts)(Bineli and Lentz, 2010)(图5b)。据野外观察研究,这些石英晶体的形成主要有四种成因模式:① 热液成因(Evans, 1944);② 斑晶成因,从岩浆房中结晶的高温石英或变质岩中的变斑晶(Vernon, 1986);③ 岩浆成因,在岩浆侵位到约600℃深度的原位结晶 et al., 2009);④ 构造成因,即早期同构造(pre- or early syntectonic)矿脉或富石英岩破裂解体的残余片段(Williams and Carmichael, 1987)。

石英眼可分为Ⅰ型和Ⅱ型两类(Harris et al., 2003)。Ⅰ型石英眼,细粒石英长石基质中的它形石英斑晶,呈现从富挥发分岩浆中晶出石英斑晶的特征。圆形到不规则的它形,直径一般1~3 mm,最大8 mm,单个晶体具有清晰的边缘,含有斜长石和磁铁矿等小包体。Ⅱ型石英眼,斑岩中的它形聚晶石英集合体,具有明显的线性排列的习性。椭圆形,颗粒小(

3.3 晶洞(Miaroliti.Cavities/‘Miaroles’)

晶洞结构是岩浆体系进入到亚固熔线演化阶段的直接证据,记录了整个岩浆—热液的演化过程(单强等, 2011; Audétat and Pettk, 2003; Bakker and Elburg, 2006; Thomas et al., 2009),为研究岩浆热液出溶机制和岩浆热液性质提供了依据。晶洞是指发育于火成岩中小的、近似为球形的、不规则状的空洞,其中发育形态良好的矿物晶体,主要为造岩矿物(如长石、石英和云母),还含有其它矿物(如绿柱石、黄玉、电气石、萤石和绿帘石)(Vernon, 2004, 图6a)。晶洞中的这些矿物晶体在母体花岗岩的晶洞壁上成核,并且向着空洞内或向着热液作用晚期沉淀的低温矿物(如石英、方解石或绿泥石)集合体方向生长(Candela, 1997)。

晶洞结构主要产于上部地壳(2长英质侵入岩中(Candela, 1997),但Ridley(2002)在花岗岩中发现长条形管状的晶洞和裂隙,推断它们可能在0.4~0.6 GPa压力的深度下结晶。Candela(1997)推断晶洞是由花岗质岩浆中出溶和释放的蒸气所形成的,在局部达到水饱和的岩浆在上升和结晶过程中,由于减压作用的影响,蒸气从岩浆中出溶逸出形成蒸气(超临界流体)气泡。气泡的出溶降低了熔体中水的浓度,熔体上升到其液相线温度的高度时有效地使熔体过冷却,结果导致形成含花斑状或文象斑状交生(granophyric intergrowths)的细粒花岗岩以及含显微晶洞、显微伟晶岩、显微文象和/或含树枝状(花斑岩)结构的细晶岩。与此同时,晶体在晶洞空腔中通过从气相沉淀而生长。大多数晶洞近似为球形,而因挥发分后期释放而形成的晶洞具有不规则形状,受从岩浆中结晶的矿物晶体之间的可用空间控制(McMillan, 1986)。

图6 (a) 骑田岭中细粒黑云母花岗岩中的晶洞(李建康等, 2011);(b) 内蒙古金厂沟梁金矿床西台子似斑状二长花岗岩的双域结构Fig. 6 (a) Miaroles in fine-grained biotite granite in Qitianling (modified after Li Jiankang et al., 2011&); (b) The two-domain texture of Xitaizi porphyaceous adamellite in the Jinchanggouliang gold deposit, Inner Mongolia

为描述细晶岩中具有高度连通性的晶洞空腔,Candela 和 Blevin(1995)提出了“相互联通的晶洞结构(Interconnected Miarolitic Texture, IMT)”,由结构可变的粗粒晶洞域和细晶基质域组成的一种双域结构(Two-domain Texture)(图6b)。细晶基质域(aplitic domain)主要含有石英、碱性长石及针状黑云母,晶体大小约0.03~0.75mm,具有内部成核的特征。粗粒晶洞域(coarser miarolitic domain)一般包括碱性长石、石英及少量萤石,晶体大小约0.75~8 mm,具有相互交织和外部成核的特征(London, 1992),该结构为岩浆—热液体系挥发分相高度连通的表征,且围绕细晶域分布。

含IMT岩相的顶部与周围花岗岩的呈突变接触关系,通常具有发育很好的细褶皱层状石英和/或长石的似伟晶岩(如Barnford花岗岩)。偶尔在上部接触带可能富含黑云母,表明流体平行接触带流动,指示具有IMT的岩相侵入到了未完全结晶的主体花岗岩中。边缘带通常具有花斑状到显微文象基质的轻度斑状结构,可能含有孤立的晶洞,在过渡带中经常含有具有文象边缘强烈发育的伟晶岩囊。含IMT的花岗岩赋存于与它们共生的同成因的花岗岩(典型的中粒—粗粒、等粒—斑状结构)中,发育的压力低于约0.2~0.3 GPa,在250 MPa或更低压力下结晶的花岗岩中发育得最好(Candela and Blevin, 1995)。Blevin(1989)测定含IMT的Barnford花岗岩侵位压力不到100 MPa。侵入体内的相互连通域处于岩体顶端,只有侵位深度浅的侵入体才能确保一个花岗岩体系具有较大成矿潜力。

在岩体的顶部区域中或其附近形成的高温岩浆热液矿床,需要在水溶液冷却和/或稀释之前有大量的岩浆挥发性相能够进入侵入体顶端区域,岩浆挥发分相必须通过岩浆体内的结晶动力带(结晶间隔)发生迁移。淬火的相互连通晶洞结构显示了一种可能的迁移机理:岩浆挥发分相可渗透的超固相线上的流动穿过和进入结晶岩浆顶部,进而特定的“跨越群(spanning clusters)”只能形成于一个给定岩浆含水量最小压力之下,只有岩浆体系中低于最小压力的部分可以使成矿物质进入岩浆挥发分相体积的跨越群中。

相互联通的晶洞结构常与矿化作用伴生,在许多与成矿有关的花岗岩中十分发育,如河南秋树湾斑岩—矽卡岩Cu—Mo矿床的花岗斑岩、黑龙江金厂金矿的二长花岗岩以及内蒙古金厂沟梁金矿的花岗岩体。

3.4 雪球结构(Snowbal.Texture)

雪球结构(Структура снежного кома)最早由前苏联学者Гинзбург 等(1972)发现,是过铝质稀有金属花岗岩中普遍发育的一种特殊的嵌晶结构(图7),表现为大量的、细小的钠长石(亦或是少量的云母以及冰晶石)在石英、钾长石、甚至极少数磷灰石中形成旋涡状、以接近轴对称的方式排列(Pollard, 1989; et al., 2000; Zhu Jinchu et al., 2001; Huang Xiaolong et al., 2002; Costi et al., 2009; Dostal et al., 2015; 吴鸣谦, 2017)。被圈闭在雪球矿物中的板条状钠长石的长轴经常平行于石英中的生长帯排列,大量的板条状钠长石封包在变斑晶的边缘,表明雪球矿物在生长过程中将钠长石推到一边,如果生长速率迅速加快,钠长石和其他几种矿物就会过度生长(次生加大或增生)并被雪球矿物所圈闭 et al., 2002, 2009)。

图7 江西宜春钽铌矿床锂白云母花岗岩和黄玉锂云母花岗岩中具有代表性的雪球结构(据吴鸣谦, 2017; Wu Mingqian et al., 2018)Fig. 7 Representative snowball texture in Lithium muscovite granite and topaz lithium mica granite in Yichun tantalum—niobium deposit, Jiangxi Province (after Wu Mingqian, 2017&; Wu Mingqian et al., 2018)(a) 锂白云母花岗岩中的雪球矿物,晶体大小在0.4~1mm左右,雪球钾长石晶体部分被钠长石取代(红色箭头);(b) 正交偏光下黄玉锂云母花岗岩中的雪球石英晶体,其中六边形的石英晶体包裹着板条状、轴对称定向的钠长石,钠长石主要集中在石英中间部位。缩写:Ab—钠长石;Kfs—钾长石;Lep—锂云母;Qz—石英;Tpz—黄玉(a) An example of snowball K-feldspar and snowball quartz crystals (about 0.4~1mm in size) in the Li-rich muscovite granite. The snowball K-feldspar crystals were partly replaced by albite (red arrows). (b) An example of snowball quartz in the topaz lepidolite granite, where a hexagonal quartz crystal encloses concentrically zoned tabular-shaped albite inclusions. Albite inclusions is mainly concentrated in the central part of quartz crystal. Abbreviations: Ab—albite; Kfs=K-feldspar; Lep=lepidolite; Qz=Quartz; Tpz=topaz

雪球结构是世界范围内高演化碱长花岗岩和含黄玉花岗岩的典型特征,如捷克Podlesí花岗岩体和中国江西宜春矿床、大吉山矿床(Schwartz, 1992; Yin Lin et al., 1995; Breiter et al., 1997; 吴鸣谦, 2017; Wu Mingqian et al., 2017),一般发育在晚阶段含矿岩体中或岩体矿化好的部位。矿化的花岗岩往往发育晶体相对完整、粒度较大的雪球矿物,贫矿体则发育晶形较差、粒度较小的雪球矿物。前人对雪球结构的形成机理做了深入的研究和讨论,但是其成因至今仍存在争议,概括起来主要分为岩浆期后热液交代蚀变假说和岩浆期岩浆结晶的原生结构假说两种。关于雪球结构的形成机理一直存在争议,目前主要存在两种观点:① 岩浆期后热液交代蚀变的产物; ② 岩浆期岩浆结晶的原生结构。

Beus 等 (1962)在对前苏联某地区的钠长石花岗岩进行研究后首先提出交代成因的观点,认为雪球结构是在花岗岩发生钠长石化的过程中形成的,并且石英斑晶在生长过程中把钠长石“捕获”进去。胡受奚等(1980)指出雪球结构是典型的变晶结构,在云英岩化过程中形成的石英包裹早先形成的矿物而形成的变斑晶。Sonyushkin 等 (1991)和Kempe 等 (1999)也认为雪球结构中的石英斑晶及其中的细小钠长石条晶都是交代形成的。

Kovalenko等(1970)报道了在蒙古国中部地区的翁岗—海依尔汗(Ongon—Khairhan)钨矿床首次发现翁岗岩(Ongonite,亦称含黄玉的石英角斑岩(Topaz-bearing Quartz Keratophyre)),且其中发育有雪球结构,随后又相继发现翁岗岩岩脉以与围岩的侵入接触关系、冷凝边构造、流动构造以及熔体包裹体(Kovalenko et al., 1971; 黄蕴慧等, 1988; 朱金初等, 1991~1992; 李福春等, 2000),因此很多学者开始相信雪球石英为岩浆成因。夏卫华等(1989)对雪球结构的岩浆成因作出了解释,在岩浆结晶的某一阶段石英、钾长石、和钠长石为主要的结晶矿物,快速生长的石英或钾长石斑晶包裹住了生长速度相对较慢的钠长石晶体,并形成了这种特殊的嵌晶结构。李福春等(2000)通过研究雪球结构的产出特征、雪球体中钠长石环带的生成关系等以及对雪球体中钠长石进行电子探针分析,指出雪球结构是在花岗质残余岩浆结晶过程中形成的一种特殊的包含结构,控制其形成的主要因素是Na2O/K2O值、F含量和H2O含量。另外, 等 (2009)通过对雪球石英进行阴极发光观察和微量元素测量,指出雪球石英是在岩浆600℃侵位位置上原位结晶的,即岩浆—热液过渡的深度结晶,而不是在潜火山岩浆房中结晶的。

而最新研究表明同样出现在两个矿床中的雪球石英很可能具有不同的成因,不能一概而论。吴鸣谦(2017)、Wu Mingqian 等 (2017)通过矿石矿物与雪球结构的关系和矿物化学特征对雪球石英的形成机理进行了分析,指出宜春矿床中的雪球石英仅包裹演化程度较低的铌锰矿,说明雪球石英在岩浆过程的早期就己经形成并包裹了早期形成的矿石矿物。但在大吉山矿床中,雪球石英与一期钽锡锰矿的蚀变矿化形成了独特的关系,雪球石英在岩体中与交代成矿作用同时发生,所以雪球石英为交代成因而非岩浆成因。

虽然对于雪球结构成因仍未有定论,但高演化花岗岩、尤其是出现了稀有金属矿化的过铝质花岗岩中普遍出现的雪球结构一定代表了成岩成矿过程中一个或多个普遍的且特征性的物理化学过程。揭示雪球结构成因有助于我们厘清成岩成矿不同阶段的岩浆的物理化学成分,明晰雪球石英与成矿的关系,并很可能发展为重要的找矿或岩浆岩成矿潜力评价的标志。

4 花岗岩成矿潜力的岩石矿物学评价标志

岩体成矿潜力问题,主要是指岩体内部或周围,在时间、空间和成因上与之有密切联系的矿床形成的可能性。岩体成矿潜力评价的指标,主要是指岩体的岩石化学特征,造岩矿物和副矿物的矿物学特征,造岩矿物和副矿物的微量元素特征以及同位素特征等(阮天健等, 1985)。岩浆岩体或花岗岩体本身的化学组成及其含量等是含矿潜力最直接的评价依据。

4.1 挥发组分和矿物学标志

岩浆挥发分(MVP)与晶出矿物控制了成矿金属元素从岩浆进入成矿流体的效率,成矿元素的晶体/熔体和MVP/熔体分配系数以及结晶作用相对于挥发分饱和的时间是挥发分和晶出矿物吸纳高比率成矿元素的决定性因素。岩浆挥发分在硅酸盐熔体中的溶解度随着熔体中(和共存的热液流体)其它挥发分浓度的变化而变化(Newman and Lowenstern, 2002; De Vivo et al., 2005)。

热液成矿流体通常是卤水,并且盐度经常很高(Roedder, 1972),通常富集Na、K和Fe的氯化物。研究表明,氯化物对Zn、Pb、Mn、Cu、Sn、Li、U及REE等从花岗岩熔体到水溶热液迁移的效率有很大的影响(Holland, 1984; 张德会, 2015)。Yardley(2005)探究了地壳不同类型热液流体中金属浓度与盐度之间的关系,热液流体的盐度(含氯度/氯浓度)与其携带的金属(Fe、Mn、Pb、Zn)的浓度具有明显的正相关关系,这揭示了Cl与这些金属形成络合物的重要潜力(鲍波等, 2014; 鲍波, 2016)。花岗岩中造岩矿物(如角闪石和云母)是成矿元素的富集或载体矿物,其晶体化学特征可广泛用于计算火成岩、变质岩和热液体系中的流体/熔体组分。了解卤素组成以及流体和熔体的演化非常重要,不仅可以用于阐明火成岩和变质过程,还可以阐明矿床形成的运移和沉淀机制(Aranovich and Safonov, 2018; Lecumberri-Sanchez and Bodnar, 2018; Hammerli and Rubenach, 2018; Webster et al., 2018; Dolejs and Zajacz, 2018; Mi and Pan Yuanming, 2018)。

北美西部和加勒比地区与含矿有关的火成岩中黑云母的平均Cl和F含量大于无矿侵入体,但与无矿侵入体中黑云母的平均Cl和F含量相比差别很小(Kesler et al., 1975)。 等 (2000)指出与矿化有关高钾火成岩云母斑晶中Cl浓度可以用于判别大陆、碰撞后以及后洋弧高钾岩浆岩Au—Cu的成矿潜力,但要小心谨慎。而F的判别效应较差,矿化和无矿环境钾质岩石中的F都可以富集到4.0%。与Sn矿化有关的骑田岭黑云母花岗岩岩体中的F高、Cl低,而无矿化环境的角闪石黑云母花岗岩体中的F含量很低、Cl高,低氧逸度(logf(O2))的黑云母花岗岩有利于Sn的成矿作用(李鸿莉等, 2007)。胶西北地区花岗岩中黑云母和角闪石F和Cl含量均较高(F远大于Cl),与金矿化有关的郭家岭期和伟德山期花岗岩均形成于高氧逸度的条件下,而与矿化无关的玲珑期花岗岩的氧逸度相对较低(杨阳等, 2017)。Mustard(2004)指出与澳大利亚Timbarra Au—Mo矿矿化密切相关的Tablelands岩体侵位于中成深度(5~10 km),在620~820℃、中等氧化条件下结晶。从图8可以看出,岩体的温度—氧逸度[T—f(O2)]路径与磁铁矿稳定场中钛铁矿—磁铁矿系列边界平行,随分离结晶增强接近磁铁矿—钛铁矿边界,演化途径与Mo叠加。

图8 与不同金属岩浆热液系统有关的钙碱性到碱性岩浆分离结晶程度与氧化态关系图解(据Thompson et al., 1999; Mustard, 2004)Fig. 8 Schematic representation of the relationship between degree of fractionation and oxidation state for calc-alkalic to alkalic magmas associated with magmatic hydrothermal systems for different dominant metal assemblages (modified after Thompson et al., 1999; Mustard, 2004)RRM:Rocky River二长花岗岩; SCS:Sandy Creek正长花岗岩; SHS:Surface Hill正长花岗岩RRM:Rocky River monzonitic granites; SCS:Sandy Creek orthoclase granites; SHS:Surface Hill orthoclase granites

根据前人研究成果可以看出,花岗岩中的挥发性元素的含量高低并不能很好地用来判别矿化与无矿侵入体,而岩浆的相对氧化状态在控制许多矿床和岩浆中相关元素的相容/不相容性质方面起着关键的作用(Candela, 1992; Blevin and Chappell, 1992; Lehmann, 1990; 张德会, 2015)。与不同类型的岩浆热液型金属矿床矿化相关的侵入体表现出不同的氧化状态,与W、Sn矿化相关的岩体主要为还原的氧化态,与Cu、Mo矿化相关的岩体主要为氧化的氧化态,而与Au矿化相关的岩体既可以是氧化也可以是还原环境,并且其氧逸度与岩浆中的全Fe含量成正比例变化。

4.2 主、微量元素地球化学

图9 Sr/Y与SiO2重量百分比的判别图(据Rohrlach and Loucks, 2005; Kelley et al., 2006)Fig. 9 Discriminant plot of Sr/Y versus SiO2 percent (modified after Rohrlach and Loucks, 2005; Kelley et al., 2006)

岩浆岩中的常量元素主要为造岩元素,它们决定了岩石的类型和基本化学特征。常量元素含量及其相互关系可能决定着所形成矿床的类型和特征,以岩石中SiO2的含量作为准则来讨论岩浆岩的成矿专属性或成矿偏爱性(张德会, 2015),但其难于判定岩体成矿与否。Lang and Titley(1998)通过实验分析指出根据两种岩浆岩的常量元素指标SiO2含量—碱度(Na2O+K2O)、Sm—Nd和/或Rb—Sr同位素组成不能有效地区分含矿侵入体与无矿侵入体,但在微量元素含量上呈现出显著的差异,含矿岩体高场强元素(HFSE)Hf、Ta、Zr、Nb、Mn以及Y亏损,与它们地球化学行为的相似性一致。与主量元素相比,虽然微量元素的丰度很低,但其行为变化很大且有选择性,对主量元素不敏感的过程非常敏感,因此微量元素可以提供控制岩石演化外部变量的信息,在岩浆岩成矿潜力评价上具有独特的优势。

元素在矿物和熔体之间的分配系数决定了元素在固相矿物中的相容性。Gao Shan 等 (1998)指出大陆地壳整体一些相容性相近的元素对比值(质量比)与原始地幔相同或接近,如果这些比值发生了较大的变化,就说明一定发生了某种特殊的地质作用过程。相关元素的含量比值主要是基于岩石中类质同象元素之间关系的差异,这些差异的产生被认为是由于元素在不同迁移环境中的行为所致(Beus and Grigoryan, 1977),如Mg低Li高是遭受过岩浆期后交代作用岩体的判别标志,这是因为黑云母中Fe置换了Mg而造成Mg的亏损,而Li则产生富集。多种微量元素比值的结合也可以对含Sn和无Sn花岗岩进行判别,锡矿化花岗岩有高的Rb/Sr、Rb/Zr、(K+Na)/(Ca+Mg)和(Na+K)/Fe和低的K/Rb、Mg/Li和Ba/Rb值(Olade, 1980; Govett, 1983)。智利斑岩铜矿带含矿侵入体最明显的特征就是Y、Mn、Th和HREE呈现强烈的较大负异常,Sr显示小的正异常,Y与MnO判别图可以显示这些异常的综合效应,以此来预测侵入体是否伴生有相关的矿化(判别有效率达92%)(Baldwin and Pearce, 1982)。Srivastava 和 Sinha(1997)提出地球化学特征指数来确定印度Rajasthan与W矿化具有成因和空间的花岗岩。Kelley 等 (2006)在区域尺度上区分和判别有成矿潜力的含水岩浆事件(图9),与菲律宾Tampakan斑岩Cu—Au矿床有关的熔体具有Sr/Y值高的特征。阿根廷东北部Sierras Pampeanas造山带中,与Sn—W矿化相关的花岗岩有更高Sn、W和Rb含量,更低Sr和Ba含量(Fogliata et al., 2012)。

4.3 稀土元素地球化学

火成岩岩石学中,镧系元素和Y,经常在稀土元素REE的名义下聚集在一起,作为微量元素被广泛用于影响液相及其固相化学组成的岩浆源及其各种过程的标志。由于REE的活动性,特别是在热液成矿作用中的活动性,已经被广泛用于对岩浆岩成矿潜力的判别中,REE可以通过热液过程富集呈矿石级别(Samson and Wood, 2005)。

研究发现REE元素以及一些元素之间的比值呈现强烈的偏差,如Eu异常、Ce异常以及非球粒陨石的Y/Ho值等(Bau, 1996; Irber, 1999; Jahn et al., 2001; Monecke et al., 2002)。与Pb—Zn—Ag矿体有关的、富含电气石、石榴子石、角闪石、长石和符山石的喷流岩,REE球粒陨石标准化模式具有LREE富集和负Eu异常以及HREE富集和负Ce异常的特征(Lottermoser, 1989)。美国亚利桑那斑岩矿床的成矿岩浆REE分布模式,表现出Eu弱正异常、中重REE呈现上凹的“勺形”形态(图10,Lang and Titley, 1998)。阿根廷东北部Sierras Pampeanas造山带所有花岗岩都呈现更高LREE值、更低HREE值以及Eu负异常,而与Sn—W矿化相关的高度演化花岗岩具低∑REE(Fogliata et al., 2012)。

REE在镧系元素浓度球粒陨石图解上的曲线具有不连续的分段分布的模式,被认为与四分组效应有关(Bau, 1996; Irber, 1999)。化学上,四分组效应(tetrad effect)是指由于其4f 电子壳构型的变化,镧系元素离子和原子的键强及其他性质细微的周期性变化。根据4f电子层填充的程度,镧系元素的顺序被分为四个四分组:La—Nd、Pm—Gd、Gd—Ho和Er—Lu。每组都构成一个平滑的上凸(M型)或下凹(W型)的图案。四分组效应在发育强烈热液作用或岩浆期后蚀变的岩浆晚期分异物中最为明显,包括高度演化的淡色花岗岩,伟晶岩和矿化花岗岩。四分组效应也经常伴有其他许多微量元素地球化学行为的变化,在富集H2O、CO2和Li、B、F和/或Cl的岩浆系统中,可以被视作在纯硅酸盐熔体和水溶流体之间的过渡体系(London, 1986, 1987; Bau, 1996)。

图10 亚利桑那州拉拉米期岩浆杂岩体的REE模式(据 Lang and Titley, 1998)Fig. 10 Generalized REE behavior in Laramide magmatic complexes, Arizona (modified from Lang and Titley, 1998)+ve—Eu的正异常;-ve—Eu的负异常+ve—positive Eu anomalies;-ve—negative Eu anomalies

5 结论及展望

综上所述,矿床学家、岩石学家和地球化学家经过数十年努力,已经对岩浆岩成矿潜力研究取得一些有价值的认识,得出以下几点结论:

(1)岩浆在分离结晶过程中能否出溶热液成为岩浆—热液矿床能否成矿以及成矿潜力的首要前提条件,但最终能否成矿还受其他因素的制约,如分离出热液流体的组成、盐度等。

(2)出溶热液的花岗岩类有其独特的结构特征,如单向固结结构(UST结构)、石英眼、晶洞和双域结构以及雪球石英结构等。

(3)岩浆岩组成对于成矿潜力判别的贡献完全基于元素的地球化学行为以及物理化学条件。岩石中主量元素的丰度挥发组分中卤化物含量的高低不能作为成矿潜力的判别标志。

(4)微量元素因其所具有的多样性和对地质环境条件变化的敏感性,是识别岩浆岩特别是花岗岩类成矿潜力的地球化学指纹。高场强元素以及现出系统地球化学行为变化的稀土元素特征有望成为成矿潜力的最佳判别标志,其中镧系四分组效应就是与高度演化花岗岩类有关的稀有稀土矿床成矿潜力的指示标志。

(5)花岗岩类含矿潜力的评价是矿床学和地球化学关于成矿学研究的一个基本科学问题,能为岩浆热液矿床的成矿预测和勘查评价提供理论指导。

花岗岩类含矿潜力的评价是成矿学领域研究的一个重要科学问题,其中许多问题尚处在探索进程中。对于花岗岩类有关的热液矿床,裂隙发育和热液角砾岩是热液水力压裂的结果,也是成矿作用强度的标志。本文重点阐述了几种特殊的热液出溶结构,除此之外还有岩浆多孔带、似伟晶岩壳以及“再生珠边”(沈敢富, 1993)等结构。对于高度演化花岗岩类,微量元素特别是双胞胎微量元素的比值也可以为花岗岩成矿潜力的判别提供有用的指标。关于四分组效应的形成机理仍需深入研究,包括具有岩浆热液过渡体系特征的热液石英脉的Y/Ho和Zr/Hf值以及四分组效应的花岗岩是否都是矿化花岗岩等问题。

致谢:野外工作得到内蒙古金陶股份有限公司刘福林高级工程师、常龙广工程师和辽宁二道沟黄金矿业有限责任公司张亚武高级工程师、陈永长高级工程师、焦海豹工程师的大力支持和帮助,李建康研究员为本文提供了部分成果资料,两位审稿专家对本文也提出许多宝贵意见,在此一并表示感谢!

参 考 文 献

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

鲍波, 赵博, 张德会, 王新彦. 2014. 氯在岩浆—热液系统演化过程中的行为. 矿物岩石地球化学通报, 33(4): 540~547.

鲍波. 2016. 岩浆挥发分在矿化斑岩体系演化过程中的行为——以德兴斑岩铜矿为例. 导师: 张德会、James D. Webster. 北京: 中国地质大学(北京)博士学位论文: 1~100.

陈光远, 孙岱生, 殷辉安. 1988. 成因矿物学与找矿矿物学. 重庆: 重庆出版社: 1~874.

陈光远, 孙岱生, 周珣若, 邵伟, 宫润潭, 邵岳. 1993. 胶东郭家岭花岗闪长岩成因矿物学与金矿化. 武汉: 中国地质大学出版社: 1~131.

胡受奚. 1980. 交代蚀变岩岩相学. 北京: 地质出版社: 1~214.

黄蕴慧, 杜绍华, 周秀仲. 1988. 香花岭岩石矿床与矿物. 北京: 科学技术出版社: 1~255.

李福春, 朱金初, 金章东, 李晓峰. 2000. 钠长石花岗岩中雪球结构形成机理的研究. 岩石矿物学杂志, 19(1): 27~36.

李鸿莉, 毕献武, 涂光炽, 胡瑞忠, 彭建堂, 吴开兴. 2007. 岩背花岗岩黑云母矿物化学研究及其对成矿意义的指示. 矿物岩石, 27(3): 49~54.

李建康, 张德会, 李胜虎. 2011. 熔体包裹体在估算花岗岩类矿床形成压力(深度)方面的应用. 矿床地质, 30(6): 1002~1016.

阮天健, 朱有光. 1985. 地球化学找矿. 北京: 地质出版社: 1~286.

单强, 廖思平, 卢焕章, 李建康, 杨武斌, 罗勇. 2011. 岩浆到热液演化的包裹体记录——以骑田岭花岗岩体为例. 岩石学报, 27(05): 1511~1520.

沈敢富. 1993. 从再生珠边结构论银岩锡矿床的成因. 火山地质与矿产, 14(2): 37~51.

吴鸣谦. 2017. 江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究. 导师: 张德会、Iain M. Samson. 北京: 中国地质大学(北京)博士学位论文: 1~141.

夏卫华, 章锦统, 冯志文, 陈紫英. 1989. 南岭花岗岩型稀有金属矿床地质. 武汉: 中国地质大学出版社: 1~308.

杨阳, 王晓霞, 于晓卫, 柯昌辉, 王立功, 郭瑞朋, 王顺安, 李小霞. 2017. 胶西北中生代花岗岩中黑云母和角闪石成分特征及成岩成矿意义. 岩石学报, 33(10): 3123~3136.

杨志明, 侯增谦, 李振清, 宋玉财, 谢玉玲. 2008. 西藏驱龙斑岩铜钼矿床中UST石英的发现: 初始岩浆流体的直接记录. 矿床地质, 27(2): 188~199.

张德会. 2015. 成矿作用地球化学. 北京: 地质出版社: 1~481.

朱金初, 刘伟新, 周凤英. 1991~1992. 香花岭翁岗岩. 南京大学国家重点实验室年报, 12~16.

Ague J J and Brimhall G H. 1987. Granites of the batholiths of California: products of local assimilation and regional-scale crustal contamination. Geology, 15(1): 63~66.

Ague J J and Brimhall G H. 1988. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100: 891~911.

Aranovich L and Safonov O. 2018. Halogens in high-grade metamorphism. In: Harlov D E and Aranovich L. eds. The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Berlin: Springer: 713~757.

Audétat A and Pettk T. 2003. The magmatic—hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Caada Pinabete plutons in northern New Mexico, USA. Geochimica et Cosmochimica Acta, 67: 97~121.

Audétat A, Pettke T, Heinrich C A, Bodnar R J. 2008. The composition of magmatic—hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103: 877~908.

Bakker R J and Elburg M A. 2006. A magmatic—hydrothermal transitioning Arkaroola (northern Flinders Ranges, South Australia): from diopside—titanite pegmatites to hematite—quartz growth. Contribution to Mineralogy and Petrology, 152(5): 541~569.

Baldwin J A and Pearce J A. 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77: 664~674.

Bao Bo, Zhao Bo, Zhang Dehui, Wang Xinyan. 2014&. The behavior of chlorine in the evolution of magmatic—hydrothermal system. Bulletin of Mineralogy, Petrology and Geochemistry, 33(4): 540~547.

Bao Bo. 2016&. The behavior of magmatic volatiles in the evolution of mineralized porphyry systems——example from Dexing porphyry deposit. Supervisor: Dehui Zhang, James D. Webster. Beijing: A dissertation submitted to China University of Geosciences for Doctoral Degree: 1~100.

Barton M D, Staude J M, Snow E A, Johnson D A. 1991. Aureole systematics. In: Contact metamorphism (eds. D. M. Kerrick). Rev. Minreralogy, 26: 723~847.

Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123: 323~333.

Beus A A, Severov E A, Sitnin A A, Subbotin K D. 1962. Albitized and greisenized granites (apogranites). Nauka, Moscow: Acad. Sci. Press, 1~196.

Beus A A and Grigoryan S V. 1977. Geochemical exploration methods for mineral deposits. Applied Publishing Ltd., pp. 1~287.

Bineli B T and Lentz D R. 2010. The nature of "quartz eyes" hosted by dykes associated with Au—Bi—As—Cu, Mo—Cu, and base-metal—Au—Ag mineral occurrences in the Mountain Free gold region (Dawson Range), Yukon, Canada. Journal of Geosciences, 55(4): 347~368.

Blevin P L. 1989. The tungsten—molybdenum—bismuth hydrothermal mineralizing system at Bamford Hill, northeast Queensland, Australia. Unpublished Ph.D. dissertation, Townsville, Queensland, Australia, James Cook University of North Queensland.

Blevin P L and Chappell B W. 1992. The role of magma sources, oxidation states and fractionation in determining the granitoid metallogeny of eastern Australia. Trans. Roy. Soc. Edinburgh. Earth Sci., 83: 305~316.

Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of Eastern Australia:implications for gold-rich ore systems. Resource Geology, 54(3): 241~252.

Bonin B. 2007. A-type granites and related rocks:evolution of a concept, problems and prospects. Lithos, 97(1~2): 1~29.

Breiter K, Fryda J, Seltmann R, Thomas R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite. Journal of Petrology, 38: 1723~1739.

Brimhall G H, Agee C, Stoffregen R. 1985. The hydrothermal conversion of hornblende to biotite. Canadian Mineralogis, 23: 369~379.

Burnham C W. 1967. Hydrothermal fluids at the magmatic stage. In: Geochemistry of hydrothermal ore deposits (1st ed.) (eds. H. L. Barnes). New York, Holt, Rinehart and Winston: 34~76.

Burnham C W. 1979. Magmas and hydrothermal fluids. In: Barnes H L. ed. Geochemistry of Hydrothermal Ore Deposits (2nd ed). New York: Wiley: 71~136.

Burnham C W and Ohmoto H. 1980. Late-stage processes of felsic magmatism. Mining Geology Special Issue, 8: 1~11.

Burnham C W. 1997. Magmas and hydrothermal fluids. In: Geochemistry of hydrothermal ore deposits (3nd ed) (eds. H. L. Barnes). New York, John Wiley and Sons, 63~123.

Candela P A. 1991. Physics of aqueous phase evolution in plutonic environments. American Mineralogist, 76: 1081~1091.

Candela P A. 1992. Controls on ore metal ratios in granite related ore systems: an experimental and computational approach. Trans. Roy. Soc. Edinburgh. Earth Sci., 83: 317~326.

Candela P A and Blevin P L. 1995. Do some miarolitic granites preserve evidence of magmatic volatile phase permeability? Economic Geology, 90: 2310~2316.

Candela P A. 1997. A review of shallow, ore-related granites: textures, volatiles, and ore metals. Journal of Petrology, 38: 1619~1633.

Carr P M, Cathles L M, Barrie C T. 2008. On the size and spacing of volcanogenic massive sulfide deposits within a district with application to the Matagami district, Quebec. Economic Geology, 103(7): 1395~1409.

Carten R B, Walker B M, Geraghty E P. 1988. Composition of field-based studies of the Henderson porphyry molybdenum deposit, Colorado, with experimental and theoretical models of porphyry systems. In: Taylor R P, Strong D F. eds. Recentavances in the Geology of Granite-related Mineral Deposits. The Canadian Institute of Mining and Metallurgy, 39: 351~366.

Cerny P, Blevin P L, Cuney M, London D. 2005. Granite-related ore deposits. In: Hedenquist et al. eds. Economic Geology 100th Anniversary, Society of Economic Geologists: 337~370.

Cervantes P and Wallace P J. 2003. Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology, 31: 235~238.

Chen Guangyuan, Sun Daisheng, Yin Huian. 1988#. Genetic and prospecting mineralogy. Chongqing: Chongqing Publishing House: 1~874.

Chen Guangyuan, Sun Daisheng, Zhou Xunruo, Shao Wei, Gong Runtan, Shao Yue. 1993#. Genetic mineralogy and gold mineralization of Guojialing granodiorite in Jiaodong region. Wuhan: University Geosciences Press: 1~131.

Clarke D B. 1992. Granitoid Rocks. London: Chapman and Hall, 1~283.

Costi H T, Dall’agnol R, Pichavant M, Ramo O T. 2009. The peralkaline tin-mineralized Madera cryolitealbite-rich granite of Pitinga, Amazonian Craton, Brazil. Petrography, mineralogy and crystallization processes: Canadian Mineralogist, 47: 1301~1327.

De Launay L. 1913. Traité de Minéralogie. Gites minéraux et métalliferes. Paris: Beranger.

De Vivo B, Lima A, Webster J D. 2005. Volatiles in magmatic—volcanic systems. Elements, 1: 19~24.

Dolejs D and Zajacz Z. 2018. Halogens in silicic magmas and their hydrothermal systems. In: Harlov D E and Aranovich L. eds. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Berlin: Springer: 431~543.

Dostal J, Kontak D, Gerel O, Shellnut J G, Fayek M. 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan,Central Mongolia: products of extreme magmatic fractionation and pervasive metasomatic fluid—rock interaction. Lithos, 236~237.

Evans J E L. 1944. Porphyry of the Porcupine district, Ontario. Geological Society of America Bulletin, 55(9): 1115~1141.

Feeley T C and Sharp Z D. 1996. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers. Geology, 24(11): 1021~1024.

Flemings M C. 1974. Solidification processing. New York: McGraw-Hill, 5(10): 2121~2134.

Fogliata A S, Baez M A, Hagemann S G. 2012. Post-orogenic, Carboniferous granite-hosted Sn—W mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina. Ore Geology Reviews, 45: 16~32.

Gao Shan, Luo Tingchuan, Zhang Benren, Zhang Hongfei, Han Yinwen, Zhao Zidan, Hu Yiken. 1998. Chemical composition of the continental crust as revealed by studies in east China. Geochim. Cosmochim. Acta, 62: 1959~1975.

Gill R. 2010. Igneous rocks and processes: a practical guide. Chichester: Wiley-Blackwell, 1~428.

Govett G S J. 1983. Rock geochemistry in mineral exploration. Elsevier: 1~461.

Hammerli J and Rubenach M. 2018. The role of halogens during regional and contact metamorphism. In: The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle (eds. D. E. Harlov and L. Aranovich). Springer, Berlin, 649~712.

Harris A C, Kamenetsky V S, White N C. 2003. Immiscible magmatic volatiles in the Bajo de la Alumbrera Cu—Au porphyries: melt and fluid record in quartz eyes. In: Mineral exploration and sustainable development (eds. D. Eliopoulos, et al.). Society for Geology Applied to Mineral Deposits (SGA), 7th Biennial SGA Meeting, Athens: Mill press, 275~278.

Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519~527.

Hedenquist J W and Richards J P. 1998. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 10: 235~256.

Heinrich C A, D, Audétat A, Ulrich T, Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27: 755~758.

Heinrich C A and Candela P A. 2014. Fluids and ore formation in the Earth’s Crust. In: Scott S D. eds. Treatise on Geochemistry (2nd ed), vol. 13. Amsterdam: Elsevier: 1~28.

Henley H F, Brown R E, Stroud W J. 1999. The mole granite-extent of mineralization and exploration potential. In: Flood P G. eds. Regional Geology, Tectonics and Metallogenesis of the New England Orogeny. Armidale: University of New England: 385~392.

Henley H F, Brown R E, Brownlow J W. 2000. The mole tableland-geology and mineral occurrences. Sydney: Geological Survey of New South Wales, 1: 50000 map.

Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press.

Hu Shouxi. 1980#. Metasomatite petrography. Beijing: Geological Publishing House: 1~214.

Huang Yunhui, Du Shaohua, Zhou Xiuzhong. 1988#. Deposits and minerals of Xianghualing. Beijing: Science Publication: 1~255.

Huang Xiaolong, Wang Rucheng, Chen Xiaoming, Hu Huan, Liu Changshi. 2002. Vertical variations in the mineralogy of the Yichun topaz—lepidolite granite, Jiangxi Province, southern China. Canadian Mineralogist, 40: 1047~1068.

Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63: 489~508.

Ishihara S and Takenouchi S. 1980. Granitic magmatism and related mineralization. Mining Geology Special Issue 8: 1~247.

Jahn Bor-ming, Wu Fuyuan, Capdevila R, Martineau F, Zhao Zhenhua, Wang Yixian. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos, 59: 71~198.

Jahns R H and Burnham C W. 1969. Experimental studies of pegmatite genesis: I. a model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64: 843~864.

Kelley D L, Coker W B, Caughlin B, Doherty M E. 2006. Beyond the obvious limits of ore deposits:the use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Economic Geology, 101: 729~752.

Kempe U, Got Z E J, Dandar S, Habermann D. 1999. Magmatic and metasomatic processes during format ion of the Nb—Zr—REE deposits Khaldzan Buregt e and Tsakhir (Mongolian Altai): indications from a combined CL—SEM study. Mineralogical Magazine, 63: 165~177.

Kesler S, Issigonis I J, Brownlow A H, Damon P E, Moore, W J, Northcote, K E, Preto V A. 1975. Geochemistry of biotites from mineralized and barren intrusive systems. Economic Geology, 70: 559~567.

Kesler S E. 1994. Mineralresources, economics and the environment. New York: McMillan.

Kirkham R V and Sinclair W D. 1988. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. In: Taylor R P and Strong D F. eds. Recent Advances in the Geolgoy of Granite-related Mineral Deposits. The Canadaian Inst. Mining and Metallurge, 39: 50~71.

Kirwin D J and Seltmann R. 2002. Unidirectional solidification textures associated with intrusion-related gold deposits. In: the 11th Quadrennial IAGOD Symp. and Geocongress: 22~26.

Klemm L, Pettke T, Heinrich C A. 2008. Fluid source and magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43: 533~552.

Kovalenko V I, Kuzmin M I, Letnikov F A. 1970. On magmatic origin of rare-metal Li F granites. Dokl. Acad., Sci. USSR, 196(2): 446~449.

Kovalenko V L, Kuz’min M I, Antipin V S. 1971. Topaz-bearing quartz keratophyre (ongonite): A new variety of subvolcanic igneous vein rock. Dokl. Akad. Sci. USSR. Earth Sci. Sect., 199: 132~135.

Lang J R and Titley S R. 1998. Isotopic and geochemical characteristics ofLaramide magmatic system in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93: 138~170.

Lang J R and Baker T. 2001. Intrusion-related gold systems: the present level of understanding. Mineral Deposita, 36(6): 477~489.

Laznicka P. 1999. Quantitative relationships among giant deposits of metals. Economic Geology, 94: 455~473.

Laznicka P. 2006.Giant metallic deposits: future sources of industrial metals. Heidelberg: Springer: 1~732.

Le Maitre R W, Streckeisen A, Zanettin B, Le Bas M J, Bonin B. 2005. Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks (2nd ed.). Cambridge: Cambridge University Press: 1~256.

Lecumberri-Sanche Z P and Bodnar B. 2018. Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. In: Harlov D E and Aranovich L. eds. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Berlin: Springer: 261~305.

Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer-Verlag: 1~211.

Li Fuchun, Zhu Jinchu, Jin Zhangdong, Li Xiaofen. 2000&. Formation mechanism of snowball texture in albite granite. Acta Petrologica Et Mineralogica, 19(1): 27~36.

Li Hongli, Bi Xianwu, Tu Guangchi, Hu Ruizhong, Peng Jiantang, Wu Kaixing. 2007&. Mineral chemistry of biotite from Yanbei pluton: implication for metallogeny. J. Mineral. Petrol., 27(3): 49~54.

Li Jiankang, Zhang Dehui, Li Shenghu. 2011&. Application of melt inclusions to estimating ore-forming pressure (depth) of granite-related ore deposits. Mineral Deposits, 30(6): 1002~1016.

London D. 1986. Magmatic—hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am. Mineral., 71: 376~395.

London D. 1987. Internal differentiation of rare-element pegmatites: effect of boron, phosphorus and fluorine. Geochim. Cosmochim. Acta, 51: 403~420.

London D. 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Canadian Mineralogist, 30: 499~540.

Lottermoser B G. 1989. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia. Mineralium Deposita, 24: 92~99.

Lowenstern J B and Sinclair W D. 1996. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W—Mo deposit, Yukon Territory, Canada. Geol. Soc. America Special Papers, 315: 291~303.

McMillan K. 1986. Spatially varied marioles in the albite porphyry of Cuchillo Mountain, southwestern New Mexico. American Mineralogist, 71: 625~631.

Mi J X and Pan Yuanmig. 2018. Halogen-rich minerals: crystal chemistry and geological significances. In: Harlov D E and Aranovich L. eds. The Role of Halogens in Terrestrial and Extraterrestrial Processes. Beilin: Springer: 123~184.

Misra K C. 2000. Understanding Mineral Deposits. Dordrecht: Kluwer Academic Publishere: 1~845.

Monecke T, Kempe U, Monecke J, Sala M, Wolf D. 2002. Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta, 66: 1185~1196.

Moore J G and Lockwood J P. 1973. Origin of comb-layering and orbicular structure, Sierra Nevada Batholith, California. Geological Society of America Bulletin, 84: 1~20.

A and Seltman R. 1999. The genetic significance of snowball quartz in highly fractionated tin granites of the Krusne Hory Erzgebirge. In: Stanley C J et al. eds. Mineral Deposits: Processes to Prossing. Rotterdam:A. A. Balkema Publishers: 409~412.

A, Seltmann R, Behr H. 2000. Application of cathodoluminescence to magmatic quartz in a tin granite——Case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita, 35: 169~189.

A, Kronz A, Breiter K. 2002. Trace elements and growth pattern in quartz: a fingerprint of the evolution of the subvolcanic Podles Granite System (Krusne Hory, Czech Republic). Bulletin of Czech Geological Survey, 77: 135~45.

M. 2009. The evolution of late-Hercynian granites and rhyolites documented by quartz——a review. Earth and Environmental Science Trans. of the Roy. Soc. of Edinburgh, 100(1~2): 185~204.

Munoz J L. 1984. F—OH and Cl—OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13(1): 469~493.

Mustard R. 2004. Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Australian Journal of Earth Sciences, 51: 385~405.

Newman S and Lowenstern J B. 2002. Volatile calc: A silicate melt—H2O—CO2 solution model written in Visual Basic for Excel. Comp. Geosci., 28: 597~604.

Olade M A. 1980. Geochemical characteristics of tin-bearing and tin-barren granites, Northern Nigeria. Econ. Geol., 75: 71~82.

Pokrovski G S, Akinfiev N N, Borisova A Y, Zotov A V, Kouzmanov K. 2014. Gold speciation and transport in geological fluids: Insights from experiments and physical—chemical modelling. Geological Society London Special Publications, 402(1): 1~1.

Pollard P J. 1989. Geologic characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium. In: P C, Erny P, Saupé F. eds. Lanthanides, Tantalum and Niobium. Berlin: Springer: 240~256.

Qu Huanchun, Sun Maoyu, Dong Pu. 2016. The δ18O of UST quartz in two porphyry deposits, China. Resource Geology, 67(1): 109~115.

Rehrig W A and Heidrick R L. 1972. Regional fracturing in Laramide stocks of Arizona and its relationship to porphyry copper mineralization. Econ. Geol., 67: 198~213.

Ridley J. 2002. Pathways and modes of fluid release from granites in the cores of active orogenic belts. Geological Society of Australia Abstracts, 67: 214.

Ridolfi F, Renzulli A, Puerini M. 2009. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45~66.

Robb L. 2005. Introduction to Ore-forming Processes. Oxford: Blackwell: 1~373.

Roedder E. 1972. Composition of fluid inclusions. U. S. Geol. Survey Prof. Paper, 440: 164.

Rohrlach B D and Loucks R R. 2005. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper—gold deposit by Mio—Pliocene crustal compression in the southern Philippines. In: Porter T M. eds. Super Porphyry Copper and Gold Deposits: A global perspective . Adelaide: PGC Publishing, 2: 1~270.

Rose A W, Hawkes H E, Webb J S. 1979. Geochemistry in Mineral Exploration (2nd ed). London: Academic Press: 1~657.

Ruan Tianjian and Zhu Youguang. 1985. Geochemical Prospecting. Beijing: Geological Publishing House:1~286.

Samson I M and Wood S A. 2005. The rare earth elements: Behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen R L and Samson I M. eds. Rare-element Geochemistry and Mineral Deposits. GCA Short Course Notes, 17: 269~298.

Schwartz M O. 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids——examples from the Ta—Li granite Yichun (China) and the Sn—W deposit Tikus (Indonesia). Mineralium Deposita, 27: 101~108.

Seward T M and Barnes H L.1997. Metals transport by hydrothermal ore fluids. In: Barnes H L. eds. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley: 435~477.

Shan Qiang, Liao Siping, Lu Huanzhang, Li Jiangkang, Yang Wubin, Luo Yong. 2011&. Fluid inclusion records from the magmatic to hydrothermal stage: A case study of Qitianling granite pluton. Acta Petrologica Sinica, 27(05): 1511~1520.

Shannon J R, Walker B M, Carten R B, Geraghty E P. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology, 10(6): 293~297.

Shaver S A. 1984a. Origin of crenulate quartz layers——evidence from the Hall (Nevada Moly) molybdenum deposit, Navada. Geol. Soc. America, Abstr. Programs, 16: 254~255.

Shaver S A. 1984b. The Hall (Nevada moly) molybdenum deposit, Nye County, Nevada: Geology, alteration, mineralization and geochemical dispersion. Unpulb. Ph.D. Thesis of Stanford Univ.: 1~261.

Shen Ganfu. 1993. From regenerated poikilitic texture of pearl margin to the genesis of Yinyan tin deposit. Volcanology Mineral Resources, 14(2): 37~51.

Sillitoe R H. 1991. Intrusion-related gold deposits. In: Foster R P. eds. Gold Metallogeny and Exploration. Glasgow: Blackie: 165~209.

Skinner B J. 1979. The many origins of hydrothermal mineral deposits. In: Barnes H L. eds. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley & Sons: 1~21.

Skinner B J. 1997. Hydrothermal mineral deposits: what we do and don’t know. In: Barnes H L. eds. Geochemistry of Hydrothermal Ore Deposits (3rd ed). New York: Wiley and Sons: 1~30.

Sonyushkin V E, Sukhorukov Y T, Scherbakova T F. 1991. P—T enviroment of crystallization of quartz in granites of the Salmi batholith, Russian Karelia. In: Haapala I, ò O T. eds. Symposium on rapakivi granites and related rocks. Geol. Surv. Finland Guide, 34: 47.

Srivastava P K and Sinha A K. 1997. Geochemical characterization of tungsten-bearing granites from Rajasthan, India. J. Geochem. Explor, 60: 173~184.

Stein H J and Hannah J L. 1990. Ore-bearing granite systems. Boulder, Colorado, Geological Society of America Special Papers: 1~364.

Stewart J P. 1983. Petrology and Geochemistry of the Intrusives Spatially Associated with the Logtung W—Mo Prospect, South—Central Yukon Territory. Unpulb. M. Sc. thesis, Univ. of Toronto: 1~243.

Taylor R P and Strong D F. 1988. Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy Special Volume, 39: 1~445.

Thomas R, Davidson P, Rhede D, Leh M. 2009. The miarolitic pegmatites from the a contribution to understanding the genesis of pegmatites. Contrib. Mineral. Petrol., 157: 505~523.

Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. 1999. Intrusion-related gold deposits associated with tungsten—tin provinces. Mineralium Deposita, 34: 323~334.

Thompson J F H and Newberry R J. 2000. Gold deposits related to reduce granitic intrusions. In: Hagemann S G and Brown P E. eds. Gold in 2000: Reviews in Economic Geology. Society of Economic Geologists Inc. Littleton: 377~400.

Tuttle O F and Bowen N L. 1958. Origin of granite in the light of experimental studies in the system NaALSi3O8—KAl Si3O8—SiO2—H2O. Memoir of the Geological Society of America, 74(2): 907~921.

Uchida E, Endo S, Makino M. 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57: 47~56.

Vaughn E S and Ridley J R. 2014. Evidence for exsolution of Au-ore fluids from granites crystallized in the mid-crust, Archaean Louis Lake Batholith, Wyoming. Geological Society London Special Publications, 402(1): 103~120.

Vernon R H. 1986. Evaluation of the “quartz-eye” hypothesis. Economic Geology, 81(6): 1520~1527.

Vernon R H. 2004. A Practical Guide to Rock Microstructure. Cambridge: Cambridge University Press:1~578.

Vigneresse J L. 2007. The role of discontinuous magma inputs in felsic magma and ore generation. Ore Geol. Rev., 30: 181~216.

Wallace S R, Mackenzie W B, Blair R G, Muncaster N K. 1978. Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado. Economic Geology, 73: 325~368.

Webster J D, Baker D R, Aiuppa A. 2018. Halogens in mafic and intermediate-silica content magmas. In: Harlov D E and Aranovich L. eds. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Berlin: Springer: 307~430.

Whitney J A. 1975. Vapor generation in a quartz monzonite magma, a synthetic model with application to porphyry copper deposits. Econ. Geol., 70: 346~358.

Whitney J and Naldrett A J. 1989. Ore deposition associated with magmas. Reviews in Economic Geology, 4: 1~250.

Williams P J and Carmichael A. 1987. Evaluation of the “quartz eye” hypothesis, a discussion. Economic Geology, 82(4): 1081~1082.

Williams-Jones A E and Heinrich C A. 2005. Vapor transport of metals and the formation of magmatic—hydrothermal ore deposits. Econ. Geol., 100: 1287~1312.

Wones D R and Eugster H P. 1965. Stability of biotite——experiment theory and application. American Mineralogist, 50(9): 1228~1272.

Wu Mingqian. 2017&. Minerallogy, geochemistry, and metallogeny of the Yichun and the Dajishan deposits. Supervisor: Zhang Dehui, Samson I M. Beijing: A dissertation submitted to China University of Geosciences for Doctoral Degree: 1~141.

Wu Mingqian, Samson I M, Zhang Dehui. 2017, Textural and chemical constraints on the formation of disseminated granite-hosted W—Ta—Nb mineralization at the Dajishan deposit, Nanling Range, southeastern China. Economic Geology, 112: 855~887.

Wu Mingqian, Samson I M, Zhang Dehui. 2018. Textural features and chemical evolution in Ta—Nb oxides:implications for deuteric rare-metal mineralization in the Yichun granite—marginal pegmatite, Southeastern China. Economic Geology, 113: 936~960.

Xia Huawei, Zhang Jintong, Feng Zhiwen, Chen Ziying. 1989#. Geology of Nanling Granite-type Rare Metal Deposit. Wuhan: University Geosciences Press: 1~308.

Yang K and Bodnar R J. 1994. Magmatic—hydrothermal evolution in the “bottoms” of porphyry copper systems: Evidence from silicate melt and aqueous fluid inclusions in granitoid intrusions in the Gyeongsang Basin, South Korea. International Geology Review, 36: 608~628.

Yang Yang, Wang Xiaoxia, Yu Xiaowei, Ke Changhui, Wang Ligong, Guo Ruipeng, Wang Shunan, Li Xiaoxia. 2017&. Chemical composition of biotite and amphibole from Mesozoic granites in northwestern Jiaodong Peninsula, China, and their implications. Acta Petrologica Sinica, 33(10): 3123~3136.

Yang Zhiming, Hou Zengqian, Li Zhenqing, Song Yucai, Xie Yuling. 2008&. Direct record of primary fluid exsolved from magma: evidence from unidirectional solidification texture (UST) in quartz found in Qulong porphyry copper deposit, Tibet. Mineral Deposits, 27(2): 188~199.

Yang Zhiming, Chang Zhaoshan, Paquette J, White N C, Ge Liangsheng. 2015. Magmatic Au mineralization at the Bilihe Au deposit, China. Economic Geology, 110: 1661~1668.

Yardley B W D. 2005. Metal concentrations in crustal fluids and their relationship to ore formation. Economic Geology, 100: 613~632.

Yin Lin, Pollard P J, Hu Shouxi, Taylor R G. 1995. Geologic and geochemical characteristics of the Yichun Ta—Nb—Li deposit, Jiangxi province, South China. Economic Geology, 90: 577~585.

Zhang Dehui. 2015. Geochemistry of Ore-forming Processes. Beijing: Geological Publishing House: 1~481.

Zhu Jinchu, Liu Weixin, Zhou Fengying. 1991~1992. Huaxiangling Ongonite. Annual Report of State Key Laboratory of Nanjing University: 12~16.

Zhu Jinchu, Li Renke, Li Fuchun, Xiong Xiaolin, Zhou Fengying, Huang Xiaolong. 2001. Topaz—albite granites and rare-metal mineralization in the Limu district, Guangxi Province, southeast China. Mineralium Deposita, 36: 393~405.

Гинзбург А И и др. 1972. Редкметальные граниты праблемы магматической дефференциации. Москова: Изд Наука.

Discussio.o.magma—hydrotherma.formatio.an.mineralizatio.o.granites

LIU Peng1), ZHANG Dehui1), WU Mingqian1), ZHANG Jilin2)

1) School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083;2) China Gold Group Resources Co., Ltd., Beijing, 100011

Abstract:The deposits related to granites are mainly magmatic—hydrothermal ores, of which their time—space distribution and genesis display great intimacy with the associated granites. Whether it can exsolve hydrothermal fluids during magmatic melting and what quantity of exsolutions it can provide is becoming a necessary prerequisite that constrain granitoid mineralization. Based on the previous researches and study here, this paper systematically summarizes that granite related to mineralization develop petrological structure of unidirectional solidification texture (UST), quartz eyes, miarolitic cavities and snowball texture in the exsolution and saturation of magma volatile phase. Contribution of magmatic chemical composition to the evaluation of ore potential of granites based on elemental geochemical behavior and physical—chemical conditions. The halide content in volatile components and the abundance of major elements cannot be used as discriminative indicators of mineralization potential, while trace elements are geochemical fingerprints that identify the ore potential of granites. The characteristics of high field strength elements and rare earth elements showing changes in system geochemical behavior are expected to be the best indicators of mineralization potential. These informations provide theoretical guidance for the metallogenic prediction and prospecting evaluation of magmatic—hydrothermal polymetallic deposits. Moreover, this paper also presents the problems in the study and points out the work that needs to be done in in near future.

Keywords:magmatic hydrothermal deposits; granite productive; exsolving hydrothermal; UST; quartz eyes; snowball texture

注: 本文为国家自然科学基金资助项目(编号:41373048和41773030)和内蒙古金厂沟梁—辽宁二道沟金矿田矿床地质特征及矿床成因研究(编号:2017-20)的成果。

收稿日期:2019-08-29;改回日期:2020-04-18;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2020.03.012

作者简介:刘鹏,女,1989年生,博士研究生,矿物学、岩石学、矿床学专业;Email:[email protected]

通讯作者:张德会,男,1955年生,教授,博士生导师,主要从事地球化学和应用地球化学的教学和研究;Email:[email protected]

Acknowledgements:This study was financially supported by the Project of Geological Characteristics and Genesis of the Inner Mongolia Jinchanggouliang-Liaoning Erdaogou Gold Deposit, Liaoning Province, China (No.2017-20), and the National Natural Science Foundation of China (No.41373048, No. 41773030). We sincerely thank senior engineer LIU Fulin, engineer CHANG Longguang from Inner Mongolia Jintao incorporated company, and senior engineer ZHANG Yawu, senior engineer CHEN Yongchang, engineer JIAO Haibao from Liaoning Erdaogou gold mining incorporated company for their help with the field work and related scientific reports. We are grateful to prof. LI Jiankang for his partial results data. We also would like to express our thanks to two reviewers for providing many valuable comments on manuscript.

Firs.author:LIU Peng, female, born in 1989, doctoral candidate, engages in study of Mineralogy, Petrology and Economic Geology, Email: [email protected]

Correspondin.auther:ZHANG Dehui, male, born in 1955, Professor, mainly engages in Teaching and Research in Geochemistry and Applied Geochemistry, Email: [email protected]

Manuscript received on: 2019-08-29;Accepted on: 2020-04-18; Edited by: ZHANG Yuxu

Doi: 10.16509/j.georeview.2020.03.012



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有