基本矩阵运算法则之笔记 您所在的位置:网站首页 矩阵运算技巧 基本矩阵运算法则之笔记

基本矩阵运算法则之笔记

2023-11-07 04:17| 来源: 网络整理| 查看: 265

矩阵运算 0. 定义1. 矩阵加法法则2. 数与矩阵相乘3. 矩阵与矩阵相乘3.1 定义3.2 乘法法则 4. 矩阵的转置5. 方阵的行列式5.1 定义5.2 运算法则 6. 逆矩阵6.1 定理 1-26.2 运算法则

0. 定义

A = ( a i × j ) ; B = ( b i × j ) i = 1... m ; j = 1... n \begin{aligned} A &= \left(a_{i \times j}\right); \\ B &= \left(b_{i \times j}\right) \\ i&=1...m; \\ j &= 1...n \end{aligned} ABij​=(ai×j​);=(bi×j​)=1...m;=1...n​

1. 矩阵加法法则

( i )   A + B = B + A ( i i )   ( A + B ) + C = A + ( B + C ) ( i i )   负 矩 阵 : − A = ( − a i j ) ; A + ( − A ) = O ; A + ( − B ) = A − B \begin{aligned} &(i) \, A + B = B + A \\ &(ii) \, (A + B) + C = A + (B + C) \\ &(ii) \, 负矩阵: \\ &-A = (-a_{ij}); \\ &A + (-A) = O; \\ &A + (-B) = A - B \end{aligned} ​(i)A+B=B+A(ii)(A+B)+C=A+(B+C)(ii)负矩阵:−A=(−aij​);A+(−A)=O;A+(−B)=A−B​

2. 数与矩阵相乘

( i )   ( λ μ ) A = λ ( μ A ) ( i i )   ( λ + μ ) A = λ A + μ A ( i i i )   λ ( A + B ) = λ A + λ B \begin{aligned} &(i) \, (\lambda\mu)A = \lambda(\mu A)\\ &(ii) \, (\lambda + \mu)A = \lambda A + \mu A \\ &(iii) \, \lambda (A + B) = \lambda A + \lambda B \end{aligned} ​(i)(λμ)A=λ(μA)(ii)(λ+μ)A=λA+μA(iii)λ(A+B)=λA+λB​

3. 矩阵与矩阵相乘 3.1 定义

设 A = ( a m × s ) A = (a_{m \times s}) A=(am×s​) 和 B = ( b s × n ) B = (b_{s \times n}) B=(bs×n​) ,则 A A A和 B B B的乘积为: C = A B C = AB C=AB 注意:

只有第一个矩阵的列数和第二个矩阵的行数相同时,才可以相乘;注意相乘的顺序(左乘和右乘) A B AB AB 不一定等于 B A BA BA, 只有两者可交换时,才相等。对于两个n阶方阵 A , B A, B A,B,若 A B = B A AB = BA AB=BA,则称方阵 A A A和 B B B是可交换的 3.2 乘法法则

( i )   ( A B ) C = A ( B C ) ( i i )   λ ( A B ) = ( λ A ) B = A ( λ B ) ( i i i )   A ( B + C ) = A B + A C , ( B + C ) A = B A + C A ( i v )   E A = A E = A , ( λ E ) A = λ A = A ( λ E ) \begin{aligned} & (i) \, (AB)C = A(BC) \\ & (ii) \, \lambda (AB) = (\lambda A)B = A(\lambda B) \\ & (iii) \, A(B + C) = AB + AC, (B + C)A = BA + CA \\ & (iv) \, EA = AE = A, (\lambda E)A = \lambda A = A (\lambda E) \end{aligned} ​(i)(AB)C=A(BC)(ii)λ(AB)=(λA)B=A(λB)(iii)A(B+C)=AB+AC,(B+C)A=BA+CA(iv)EA=AE=A,(λE)A=λA=A(λE)​ 注意:

只有方阵的幂才有意义: A k A^k Ak 4. 矩阵的转置

( i )   ( A T ) T = A ( i i )   ( A + B ) T = A T + B T ( i i i )   ( λ A ) T = λ A T ( v i )   ( A B ) T = B T A T ( v )   对 称 矩 阵 : A T = A \begin{aligned} &(i) \, (A^T)^T = A \\ &(ii) \, (A + B)^T = A^T + B^T \\ &(iii) \, (\lambda A)^T = \lambda A^T \\ &(vi) \, (AB)^T = B^TA^T \\ &(v) \, 对称矩阵:A^T = A \end{aligned} ​(i)(AT)T=A(ii)(A+B)T=AT+BT(iii)(λA)T=λAT(vi)(AB)T=BTAT(v)对称矩阵:AT=A​

5. 方阵的行列式 5.1 定义 矩阵是有一定顺序的数表;行列式是一个数。n阶方阵的行列式: ∣ A ∣ 或 d e t A |A| 或 det A ∣A∣或detA 5.2 运算法则

( i )   ∣ A T ∣ = ∣ A ∣ ( i i )   ∣ λ A ∣ = λ n ∣ A ∣ ( i i i )   ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \begin{aligned} &(i) \, |A^T| = |A| \\ &(ii) \, |\lambda A| = \lambda^n|A| \\ &(iii) \, |AB| = |A||B| \end{aligned} ​(i)∣AT∣=∣A∣(ii)∣λA∣=λn∣A∣(iii)∣AB∣=∣A∣∣B∣​ 伴随矩阵:由行列式 ∣ A ∣ |A| ∣A∣的各个元素的代数余子式 A i j A_{ij} Aij​构成。 A ∗ = { A 11 A 21 − A n 1 A 12 A 22 − A n 2 ∣ ∣ ∣ ∣ A 1 n A 2 n − A n n } ; A i j = ( − 1 ) i + j M i j A^* = \left\{ \begin{matrix} A_{11} & A_{21} & - & A_{n1}\\ A_{12} & A_{22} & - & A_{n2} \\ | & | & | & | \\ A_{1n} & A_{2n} & - & A_{nn} \end{matrix} \right\}; A_{ij} = (-1)^{i+j}M_{ij} A∗=⎩⎪⎪⎨⎪⎪⎧​A11​A12​∣A1n​​A21​A22​∣A2n​​−−∣−​An1​An2​∣Ann​​⎭⎪⎪⎬⎪⎪⎫​;Aij​=(−1)i+jMij​ ( v i ) A ∗ A = A A ∗ = ∣ A ∣ E (vi) A^*A = AA^* = |A|E (vi)A∗A=AA∗=∣A∣E

6. 逆矩阵

对于n阶矩阵 A A A,如果有一个n阶矩阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E 则, A A A可逆,且记为: A − 1 = B A^{-1}=B A−1=B(逆矩阵是唯一的)

6.1 定理 1-2

n 阶方阵可逆的充分必要条件为: ∣ A ∣ ≠ 0 |A| \neq 0 ∣A∣​=0, 且: A − 1 = 1 ∣ A ∣ A ∗ , A ∗ 为 伴 随 矩 阵 A^{-1} = \frac{1}{|A|} A^*, A^*为伴随矩阵 A−1=∣A∣1​A∗,A∗为伴随矩阵

若 ∣ A ∣ ≠ 0 |A| \neq 0 ∣A∣​=0,则 A A A为奇异矩阵,否则为非奇异矩阵;可逆矩阵为非奇异矩阵推论:若 A B = E 或 ( B A = E ) AB = E 或 (BA = E) AB=E或(BA=E),则 B = A − 1 B=A^{-1} B=A−1 6.2 运算法则

(i) 若 A A A可逆,则 A − 1 A^{-1} A−1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1} =A (A−1)−1=A (ii)若 A A A可逆,数 λ ≠ 0 \lambda \neq 0 λ​=0,则 λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1} = \frac{1}{\lambda}A^{-1} (λA)−1=λ1​A−1 (iii)若 A , B A,B A,B为同阶矩阵且可逆,则 A B AB AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1 (iv)若 A A A可逆,则 A T A^T AT亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)−1=(A−1)T



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有