河南省夏季臭氧生成敏感性及其驱动因素分析 您所在的位置:网站首页 白杨木是什么意思 河南省夏季臭氧生成敏感性及其驱动因素分析

河南省夏季臭氧生成敏感性及其驱动因素分析

2024-07-09 15:49| 来源: 网络整理| 查看: 265

Baek K H, Kim J H, Park R J, Chance K and Kurosu T P. 2014. Validation of OMI HCHO data and its analysis over Asia. Science of the Total Environment, 490: 93-105 [DOI: 10.1016/j.scitotenv.2014.04.108http://dx.doi.org/10.1016/j.scitotenv.2014.04.108]

Cardelino C A and Chameides W L. 2000. The application of data from photochemical assessment monitoring stations to the observation-based model. Atmospheric Environment, 34(12/14): 2325-2332 [DOI: 10.1016/S1352-2310(99)00469-0http://dx.doi.org/10.1016/S1352-2310(99)00469-0]

Chen L F, Shang H Z, Fan M, Tao J H, Husi L T, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M and Liu D D. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring. National Remote Sensing Bulletin, 25(9): 1917-1931

陈良富, 尚华哲, 范萌, 陶金花, 胡斯勒图, 张莹, 王红梅,程良晓, 张欣欣, 伟乐斯, 李明阳, 邹铭敏, 刘冬冬. 2021. 高分五号卫星大气参数探测综述.遥感学报, 25(9): 1917-1931 [DOI: 10.11834/jrs.20210582http://dx.doi.org/10.11834/jrs.20210582]

Chen Y P, Yan H, Yao Y J, Zeng C L, Gao P, Zhuang L Y, Fan L Y and Ye D Q. 2020. Relationships of ozone formation sensitivity with precursors emissions, meteorology and land use types, in Guangdong-Hong Kong-Macao Greater Bay Area, China. Journal of Environmental Sciences, 94: 1-13 [DOI: 10.1016/j.jes.2020.04.005http://dx.doi.org/10.1016/j.jes.2020.04.005]

Dang R J, Liao H and Fu Y. 2021. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017. Science of the Total Environment, 754: 142394 [DOI: 10.1016/j.scitotenv.2020.142394http://dx.doi.org/10.1016/j.scitotenv.2020.142394]

Duncan B N, Yoshida Y, Olson J R, Sillman S, Martin R V, Lamsal L, Hu Y T, Pickering K E, Retscher C, Allen D J and Crawford J H. 2010. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmospheric Environment, 44(18): 2213-2223 [DOI: 10.1016/j.atmosenv.2010.03.010http://dx.doi.org/10.1016/j.atmosenv.2010.03.010]

He Z R, Wang X M, Ling Z H, Zhao J, Guo H, Shao M and Wang Z. 2019. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 19(13): 8801-8816 [DOI: 10.5194/acp-19-8801-2019http://dx.doi.org/10.5194/acp-19-8801-2019]

Jin X M and Holloway T. 2015. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres, 120(14): 7229-7246 [DOI: 10.1002/2015JD023250http://dx.doi.org/10.1002/2015JD023250]

Lamsal, L N, Krotkov N A, Vasilkov A, Marchenko S, Qin W H, Yang E S, Fasnacht Z, Joanna J, Choi S, Haffner D, Swartz W H, Fisher B and Bucsela E. 2021. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments. Atmospheric Measurement Techniques, 14(1): 455-479 [DOI: 10.5194/amt-14-455-2021http://dx.doi.org/10.5194/amt-14-455-2021]

Li K, Jacob D J, Liao H, Zhu J, Shah V, Shen L, Bates K H, Zhang Q and Zhai S X. 2019. A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12(11): 906-910 [DOI: 10.1038/s41561-019-0464-xhttp://dx.doi.org/10.1038/s41561-019-0464-x]

Li K, Jacob D J, Liao H, Qiu Y L, Shen L, Zhai S X, Bates K H, Sulprizio M P, Song S J, Lu X, Zhang Q, Zheng B, Zhang Y L, Zhang J Q, Lee H C and Kuk S K. 2021a. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the National Academy of Sciences of the United States of America, 118(10): e2015797118 [DOI: 10.1073/pnas.2015797118http://dx.doi.org/10.1073/pnas.2015797118]

Li M, Liu H, Geng G N, Hong C P, Liu F, Song Y, Tong D, Zheng B, Cui H Y, Man H Y, Zhang Q and He K B. 2017. Anthropogenic emission inventories in China: a review. National Science Review, 4(6): 834-866 [DOI: 10.1093/nsr/nwx150http://dx.doi.org/10.1093/nsr/nwx150]

Li Y S, Yin S S, Yu S J, Bai L, Wang X D, Lu X and Ma S L. 2021b. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. Journal of Environmental Sciences, 99: 354-368 [DOI: 10.1016/j.jes.2020.06.021http://dx.doi.org/10.1016/j.jes.2020.06.021]

Liu P F, Song H Q, Wang T H, Wang F, Li X Y, Miao C H and Zhao H P. 2020. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262: 114366 [DOI: 10.1016/j.envpol.2020.114366http://dx.doi.org/10.1016/j.envpol.2020.114366]

Liu Z Y, Qi Z L, Ni X F, Dong M T, Ma M Y, Xue W B, Zhang Q Y and Wang J N. 2021. How to apply O3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning. Science of the Total Environment, 772: 145392 [DOI: 10.1016/j.scitotenv.2021.145392http://dx.doi.org/10.1016/j.scitotenv.2021.145392]

Lu K D, Zhang Y H, Su H, Shao M, Zeng L M, Zhong L J, Xiang Y R, Chang C C, Chou C K C and Wahner A. 2010. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Science China Chemistry, 53(3): 651-663

陆克定, 张远航, 苏杭, 邵敏, 曾立民, 钟流举, 向运荣, 张志忠, 周崇光, Wahner A. 2010. 珠江三角洲夏季臭氧区域污染及其控制因素分析. 中国科学: 化学, 40(4): 407-420 [DOI: 10.1360/zb2010-40-4-407http://dx.doi.org/10.1360/zb2010-40-4-407]

Martin R V, Fiore A M and Van Donkelaar A. 2004. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophysical Research Letters, 31(6): L06120 [DOI: 10.1029/2004GL019416http://dx.doi.org/10.1029/2004GL019416]

Schroeder J R, Crawford J H, Fried A, Walega J, Weinheimer A, Wisthaler A, Müller M, Mikoviny T, Chen G, Shook M, Blake D R and Tonnesen G S. 2017. New insights into the column CH2O/NO2 ratio as an indicator of near-surface ozone sensitivity. Journal of Geophysical Research: Atmospheres, 122(16): 8885-8907 [DOI: 10.1002/2017JD026781http://dx.doi.org/10.1002/2017JD026781]

Sillman S. 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. Journal of Geophysical Research: Atmospheres, 100(D7): 14175-14188 [DOI: 10.1029/94JD02953http://dx.doi.org/10.1029/94JD02953]

Sillman S. 2003. Tropospheric ozone and photochemical smog//Treatise on Geochemistry. Oxford: Pergamon: 407-431 [DOI: 10.1016/B0-08-043751-6/09053-8http://dx.doi.org/10.1016/B0-08-043751-6/09053-8]

Sillman S and He D Y. 2002. Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. Journal of Geophysical Research: Atmospheres, 107(D22): ACH 26-1-ACH 26-15 [DOI: 10.1029/2001JD001123http://dx.doi.org/10.1029/2001JD001123]

Sillman S, Vautard R, Menut L and Kley D. 2003. O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris: results from models and atmospheric pollution over the Paris Area (ESQUIF) measurements. Journal of Geophysical Research: Atmospheres, 108(D17): 8563 [DOI: 10.1029/2002JD001561http://dx.doi.org/10.1029/2002JD001561]

Souri A H, Nowlan C R, González Abad G, Zhu L, Blake D R, Fried A, Weinheimer A J, Wisthaler A, Woo J H, Zhang Q, Chan Miller C E, Liu X and Chance K. 2020. An inversion of NOx and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 20(16): 9837-9854 [DOI: 10.5194/acp-20-9837-2020http://dx.doi.org/10.5194/acp-20-9837-2020]

Su R, Lu K D, Yu J Y, Tan Z F, Jiang M Q, Li J, Xie S D, Wu Y S, Zeng L M, Zhai C Z and Zhang Y H. 2018. Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model. Science China Earth Sciences, 61(1): 1-10 [DOI: 10.1007/s11430-017-9104-9http://dx.doi.org/10.1007/s11430-017-9104-9]

Sun J, Shen Z X, Wang R N, Li G H, Zhang Y, Zhang B, He K, Tang Z Y, Xu H M, Qu L L, Ho S S H, Liu S X and Cao J J. 2021. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: observations, source attributions and ozone sensitivity. Environment International, 146: 106279 [DOI: 10.1016/j.envint.2020.106279http://dx.doi.org/10.1016/j.envint.2020.106279]

Wang J F and Xu C D. 2017. Geodetector: principle and prospective. Acta Geographica Sinica, 72(1): 116-134

王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134 [DOI: 10.11821/dlxb201701010http://dx.doi.org/10.11821/dlxb201701010]

Wang N, Lyu X P, Deng X J, Huang X, Jiang F and Ding A J. 2019. Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677: 732-744 [DOI: 10.1016/j.scitotenv.2019.04.388http://dx.doi.org/10.1016/j.scitotenv.2019.04.388]

Wang T, Xue L K, Brimblecombe P, Lam Y F, Li L and Zhang L. 2017. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575: 1582-1596 [DOI: 10.1016/j.scitotenv.2016.10.081http://dx.doi.org/10.1016/j.scitotenv.2016.10.081]

Wang W N, van der A R, Ding J Y, van Weele M and Cheng T H. 2021a. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21(9): 7253-7269 [DOI: 10.5194/acp-21-7253-2021http://dx.doi.org/10.5194/acp-21-7253-2021]

Wang X Q, Zhang T S, Xiang Y, Lv L H, Fan G Q and Ou J P. 2021b. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Science of the Total Environment, 751: 141740 [DOI: 10.1016/j.scitotenv.2020.141740http://dx.doi.org/10.1016/j.scitotenv.2020.141740]

Wu W L, Xue W B, Lei Y and Wang J N. 2018. Sensitivity analysis of ozone in Beijing-Tianjin-Hebei (BTH) and its surrounding area using OMI satellite remote sensing data. China Environmental Science, 38(4): 1201-1208

武卫玲, 薛文博, 雷宇, 王金南. 2018. 基于OMI数据的京津冀及周边地区O3生成敏感性. 中国环境科学, 38(4): 1201-1208 [DOI: 10.3969/j.issn.1000-6923.2018.04.001http://dx.doi.org/10.3969/j.issn.1000-6923.2018.04.001]

Yang P L, Zhang Y, Wang K, Doraiswamy P and Cho S H. 2019. Health impacts and cost-benefit analyses of surface O3 and PM2.5 over the U.S. under future climate and emission scenarios. Environmental Research, 178: 108687 [DOI: 10.1016/j.envres.2019.108687http://dx.doi.org/10.1016/j.envres.2019.108687]

Yue X, Unger N, Harper K, Xia X G, Liao H, Zhu T, Xiao J F, Feng Z Z and Li J. 2017. Ozone and haze pollution weakens net primary productivity in China. Atmospheric Chemistry and Physics, 17(9): 6073-6089 [DOI: 10.5194/acp-17-6073-2017http://dx.doi.org/10.5194/acp-17-6073-2017]

Zhao H, Zheng Y F, Zhang Y X and Li T. 2020. Evaluating the effects of surface O3 on three main food crops across China during 2015-2018. Environmental Pollution, 258: 113794 [DOI: 10.1016/j.envpol.2019.113794http://dx.doi.org/10.1016/j.envpol.2019.113794]

Zhu S Y, Li X Y, Cheng T H, Yu C, Wang X H, Miao J and Hou C. 2019. Comparative analysis of long-term (2005—2016) spatiotemporal variations in high-level tropospheric formaldehyde (HCHO) in Guangdong and Jiangsu Provinces in China. Journal of Remote Sensing, 23(1): 137-154

朱松岩, 李小英, 程天海, 余超, 王新辉, 苗晶, 侯灿. 2019. 广东省和江苏省大气甲醛时空变化对比分析. 遥感学报, 23(1): 137-154 [DOI: 10.11834/jrs.20197528http://dx.doi.org/10.11834/jrs.20197528]

Zhuang L Y, Chen Y P, Fan L Y and Ye D Q. 2019. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products. Acta Scientiae Circumstantiae, 39(11): 3581-3592

庄立跃, 陈瑜萍, 范丽雅, 叶代启. 2019. 基于OMI卫星数据和MODIS土地覆盖类型数据研究珠江三角洲臭氧敏感性. 环境科学学报, 39(11): 3581-3592 [DOI: 10.13671 /j.hjkxxb.2019.0218http://dx.doi.org/10.13671/j.hjkxxb.2019.0218]



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有