是谁开启了量子力学的大门,又是谁会让这门学科大放异彩? 您所在的位置:网站首页 海森堡显微镜实验 是谁开启了量子力学的大门,又是谁会让这门学科大放异彩?

是谁开启了量子力学的大门,又是谁会让这门学科大放异彩?

2024-07-04 05:26| 来源: 网络整理| 查看: 265

1905年,爱氏在他的革命性论文《关于光的产生和转变的一个启发试探性的观点》中秉承了普朗克的能量量子化假说,提出了光量子的概念。在爱因斯坦看来,将光看作是一份份不连续的能量子将有助于理解一些电磁理论无法理解的现象:

在我看来,如果假定光的能量在空间的分布是不连续的,就可以更好地理解黑体辐射、光致发光、紫外线产生阴极射线,以及其他有关光的产生和转变的现象的各种观测结果……这些能量子在运动中不再分散,只能整个地被吸收或产生。— 阿尔伯特·爱因斯坦

如前所述,这里提到的阴极射线正是光电效应所产生的电流。爱因斯坦进一步将光量子概念应用到光电效应的解释中,并提出了描述入射光量子能量与逸出电子能量之间关系的爱因斯坦光电方程。虽然这一理论在1905年就已提出,真正通过实验验证则是美国物理学家罗伯特·密立根在1916年才完成的。

密立根的光电效应实验测量了爱因斯坦所预言的遏制电压和频率的关系,其曲线斜率正是普朗克在1900年计算得到的普朗克常数,从而“第一次判决性地证明了”爱因斯坦光量子理论的正确。不过,密立根最初的实验动机恰恰相反,其本人和当时大多数人一样,对量子理论持相当大的保守态度。

1906年,爱因斯坦将普朗克定律应用于固体中的原子振动模型,他假设所有原子都以同一频率振动,并且每个原子有三个自由度,从而可求和得到所有原子振动的内能。将这个总能量对温度求导数就可得到固体热容的表达式,这一固体热容模型从而被称作爱因斯坦模型。这些内容发表于1907年的论文《普朗克的辐射理论和比热容理论》中。

左图为:尼尔斯·玻尔

1908年至1909年间,欧内斯特·卢瑟福在研究α粒子散射的过程中发现了α粒子的大角度散射现象,从而猜想原子内部存在一个强电场。其后他于1911年发表了论文《物质对α、β粒子的散射和原子构造》,通过散射实验的结果提出了全新的原子结构模型:正电荷集中在原子中心,即原子中心存在原子核。

事实上,卢瑟福并非提出原子结构的“行星模型”的第一人,然而这类模型的问题在于,在经典电磁理论框架下,近距的电磁相互作用无法维持这样的有心力系统的稳定性(参见广义相对论中的开普勒问题中所描述的近距的万有引力相互作用在经典力学中也会给太阳系带来同样问题);此外,在经典理论中运动电子产生的电磁场还会产生电磁辐射,使电子能量逐渐降低,对于这些难题卢瑟福采取了回避的对策。

1912年至1913年间,丹麦物理学家尼尔斯·玻尔肯定了卢瑟福的原子模型,但同时指出原子的稳定性问题不能在经典电动力学的框架下解决,而唯有依靠量子化的方法。

玻尔从氢原子光谱的巴耳末公式和约翰尼斯·斯塔克的价电子跃迁辐射等概念受到启发,对围绕原子核运动的电子轨道进行了量子化,而原子核和电子之间的动力学则依然遵守经典力学,因此一般来说玻尔模型是一种半经典理论。这些内容发表在他1913年的著名三部曲论文《论原子构造和分子构造》中。论文中他建立了一个电子轨道量子化的氢原子模型,这一模型是基于两条假设之上的:

1、体系在定态中的动力学平衡可以藉普通力学进行讨论,而体系在不同定态之间的过渡则不能在这基础上处理。

2、后一过程伴随有均匀辐射的发射,其频率与能量之间的关系由普朗克理论给出。

左图为:阿诺·索末菲。

这一模型很好地描述了氢光谱的规律,并且和实验观测值相当符合。此外,玻尔还从对应原理出发,将电子轨道角动量也进行了量子化,并给出了电子能量、角频率和轨道半径的量子化公式。玻尔模型在解释氢原子的发射和吸收光谱中取得了非常大的成功,是量子理论发展的重要里程碑。

不过,玻尔模型在很多地方仍然是粗略的:例如它只能解释氢原子光谱,对其他稍复杂的原子光谱就毫无办法;它创立之时人们还没有自旋的概念,从而玻尔模型无法解释原子谱线的塞曼效应和精细结构;玻尔模型也无法说明电子在两条轨道之间跃迁的过程中到底是处于一种什么状态(即泡利所批评的“糟糕的跃迁”)。

德国物理学家阿诺·索末菲在1914年至1915年间发展了玻尔理论,他提出了电子椭圆轨道的量子化条件,从而将开普勒运动纳入到量子化的玻尔理论中并提出了空间量子化概念,他还给量子化公式添加了狭义相对论的修正项。

索末菲的量子化模型很好地解释了正常塞曼效应、斯塔克效应和原子谱线的精细结构,他的理论收录在他在1919年出版的《原子结构与光谱线》一书中。索末菲在玻尔模型的基础上给出了更一般化的量子化条件:{\displaystyle \oint p_{i}dq_{i}=n_{i}h\,\!},这一条件被称作旧量子条件或威耳逊-索末菲量子化定则,与之相关联的理论是埃伦费斯特指出的被量子化的物理量是一个绝热不变量。

左图为:路易·德布罗意

1905年爱因斯坦对电磁辐射的能量进行量子化从而提出了光量子的概念,但此时的光量子只是能量不连续性的一种体现,还不具有真实的粒子概念。1909年,爱因斯坦发表了《论我们关于辐射的本性和组成的观点的发展》,在这篇发言兼论文中爱因斯坦证明了如果普朗克黑体辐射定律成立,则光子必须携带有动量并应被当作粒子对待,同时还指出电磁辐射必须同时具有波动性和粒子性两种自然属性,这被称作波粒二象性。

1917年,爱因斯坦在《论辐射的量子理论》中更深入地讨论了辐射的量子特性,他指出辐射具有两种基本方式:自发辐射和受激辐射,并建立了一整套描述原子辐射和电磁波吸收过程的量子理论,这不但成为五十年后激光技术的理论基础,还促成了现代物理学中迄今最精确的理论——量子电动力学的诞生。

1923年,美国物理学家阿瑟·康普顿在研究X射线被自由电子散射的情况中发现X射线出现能量降低而波长变长的现象,他用爱因斯坦的光量子论解释了这一现象并于同年发表了《X射线受轻元素散射的量子理论》。康普顿效应从而成为了光子存在的论断性证明,它证明了光子携带有动量,爱因斯坦在1924年的短评《康普顿实验》中高度评价了康普顿的工作。

1923年,法国物理学家路易·德布罗意在光的波粒二象性,以及布里渊为解释玻尔氢原子定态轨道所提出的电子驻波假说的启发下,开始了对电子波动性的探索。

他提出了实物粒子同样也具有波粒二象性的假说,对电子而言,电子轨道的周长应当是电子对应的所谓“位相波”波长的整数倍。德布罗意在他的博士论文中阐述了这一理论,但他同时认为他的电子波动性理论所描述的波的概念“像光量子的概念一样,只是一种解释”,因此真正的粒子的波函数的概念是等到薛定谔建立波动力学之后才完备的。另外,德布罗意在论文中也并没有明确给出物质波的波长公式,虽然这一想法已经反映在他的内容中。

德布罗意的博士论文被爱因斯坦看到后得到了很大的赞许,爱因斯坦并向物理学界广泛介绍了德布罗意的工作。这项工作被认为是统一了物质粒子和光的理论,揭开了波动力学的序幕。

1927年,贝尔实验室的克林顿·戴维孙和雷斯特·革末进行了著名的戴维孙-革末实验,他们将低速电子射入镍晶体,观测每一个角度上被散射的电子强度,所得的衍射图案与布拉格预测的X射线的衍射图案相同,这是电子也会像波一样发生衍射的确凿证明。特别地,他们发现对于具有特定能量的入射电子,在对应的散射角度上散射最明显,而从布拉格光栅衍射公式得到的衍射波长恰巧等于实验中具有对应能量电子的德布罗意波长。

左图为:维尔纳·海森堡

有别于旧量子论的现代量子力学的诞生,是以1925年德国物理学家维尔纳·海森堡建立矩阵力学和奥地利物理学家埃尔温·薛定谔建立波动力学和非相对论性的薛定谔方程,从而推广了德布罗意的物质波理论为标志的。

矩阵力学是第一个完备且被正确定义的量子力学理论,通过将粒子的物理量阐释为随时间演化的矩阵,它能够解释玻尔模型所无法理解的跃迁等问题。矩阵力学的创始人是海森堡,另外他的德国同胞马克斯·玻恩和帕斯库尔·约当也做出了重要工作。

1924年,23岁的海森堡还只是哥廷根大学未取得终身教职的一名年轻教师,他于同年九月应玻尔的邀请来到哥本哈根进行六个月的交流访问,此间海森堡受到了玻尔和他的学生汉斯·克拉莫斯等人的深刻影响。1925年海森堡回到哥廷根,在五月之前他的工作一直是致力于计算氢原子谱线并试图只采用可观察量来描述原子系统。同年六月为了躲避鼻炎的流行,海森堡前往位于北海东部并且没有花粉侵扰的黑尔戈兰岛。在那里他一边品味歌德的抒情诗集,一边思考着光谱的问题,并最终意识到引入不可对易的可观察量或许可以解决这个问题。

其后他在回忆中写道:“当时正是凌晨三点,最终的计算结果即将出现在我面前,起初这让我深深震撼了。我非常兴奋以至于无法考虑睡觉的事,于是我离开房间前往岩石的顶端等待朝阳。”我们可以想象一下,他的高兴,他的喜悦是如此不可抑制。

回到哥廷根后,海森堡将他的计算递交给沃尔夫冈·泡利和马克斯·玻恩评判,他对泡利附加评论说:“所有内容对我来说都还很不清楚,但似乎电子不应当在轨道上运动了”。

在海森堡的理论中,电子不再具有明确的轨道,他从而意识到电子的跃迁几率并不是一个经典量,因为在描述跃迁的傅里叶级数中只有频率是可观察量。他用一个系数矩阵取代了经典的傅里叶级数,在经典理论中傅里叶系数表征着辐射的强度,而在矩阵力学中表征强度的则是位置算符的矩阵元的大小。

海森堡理论的数学形式中系统的哈密顿量是位置和动量的函数,但它们不再具有经典力学中的定义,而是由一组二阶(代表着过程的初态和终态)傅里叶系数的矩阵给出。

玻恩在阅读海森堡的理论时,发现这一数学形式可以用系统化的矩阵方法来描述,这一理论从而被称作矩阵力学。于是玻恩和他的助手约尔当一起发展了这种理论的严谨数学形式,他们的论文在海森堡的论文发表六十天后也公布于众。

同年11月16日,玻恩、海森堡和约尔当三人又联合发表了一篇后续论文,论文将情形推广到多自由度及含有简并、定态微扰和含时微扰,全面阐述了矩阵力学的基本原理:

1. 所有的可观察量都可用一个厄米矩阵表示,一个系统的哈密顿量是广义坐标矩阵和与之共轭的广义动量矩阵的函数。

2. 可观察量的观测值是厄米矩阵的本征值,系统能量是哈密顿量的本征值。

3. 广义坐标和广义动量满足正则对易关系(强量子条件)。

4. 跃迁频率满足频率条件。

如上所述,海森堡的矩阵力学所基于的观念是,电子本身的运动是无法观测的,例如在跃迁中只有频率是可观察量,只有可观察量才可被引入物理理论中。因此如果不能设计一个实验来准确观测电子的位置或动量,则谈论一个电子运动的位置或动量是没有意义的。

1927年,海森堡从位置和动量的共轭对易关系推导出了两者的不确定性之间的关系,这被称作不确定性原理。海森堡设想了一个理想实验,即著名的海森堡显微镜实验,来说明电子位置和动量的不确定性关系;以及通过施特恩-盖拉赫实验来说明自旋的几个正交分量彼此之间的不确定性关系。

不过,玻尔虽然对海森堡的不确定性原理表示赞同,却否定了他的理想实验。玻尔认为不确定性原理其实是波粒二象性的体现,但实验观测中只能展示出粒子性或波动性两者之一,即不可能同时观测到电子的粒子性和波动性,这被玻尔称作互补原理。

海森堡的不确定性原理、玻尔的互补原理和波恩的波函数统计诠释以及相关联的量子观念,构成了被当今物理学界最为认可的量子力学思想——哥本哈根诠释。

摘自独立学者,科普作家灵遁者书籍《见微知著》返回搜狐,查看更多



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有