贝叶斯决策理论 您所在的位置:网站首页 模式识别课程大作业怎么做的 贝叶斯决策理论

贝叶斯决策理论

2024-05-25 12:06| 来源: 网络整理| 查看: 265

研究生课程作业

贝叶斯决策理论

课程名称模式识别

姓名xx

学号xxxxxxxxx

专业软件工程

任课教师xxxx

提交时间2019.xxx

课程论文提交时间:2019 年3月19 日

需附上习题题目

1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系:

先验概率

针对M 个事件出现的可能性而言,不考虑其他任何条件

类条件概率密度函数

是指在已知某类别的特征空间中,出现特

征值X 的概率密度,指第 类样品其属性X 是如何分布的。

后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。贝叶斯公式为

类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。

2. 试写出利用先验概率和分布密度函数计算后验概率的公式

3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。

最小错误率

如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω

12(|)

(|)

P x P x ωλω

If

12(|)

(|)

P x P x ωλω> then 2x ω∈

4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω=

最小错误率贝叶斯决策规则为:

If 1...,(|)()max (|)i i j j c

p x P P x ωωω==, then i x ω∈

两类情况:

若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω

(1) 12(|)(|)P X P X ωω=, 若12()()P P ωω>,则1X ω∈

若12()()P P ωω

(2) 12()()P P ωω=,若12(|)(|)p X p X ωω>,则1X ω∈

若12(|)(|)p X p X ωω

5. 对两类问题,证明最小风险贝叶斯决策规则可表示为, 若

112222221111(|)()()

(|)()()

P x P P x P ωλλωωλλω->-

则1x ω∈,反之则2x ω∈ 计算条件风险

2

111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑

2

222112221

(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑

如果 111122(|)(|)P x P x λωλω+-

211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-

112222221111(|)()()

(|)()()

P x P P x P ωλλωωλλω->-

所以,如果

112222221111(|)()()

(|)()()

P x P P x P ωλλωωλλω->- ,则1x ω∈,反之则2x ω∈

6. 表示模式的特征向量d x R ∈,对一个c 类分类问题,假设各类先验概率相等,每一类条件概率密度为高斯分布。

(1)请写出类条件概率密度函数的数学形式;(2)请写出在下面两种情况下的最小错误率决策判别函数:(a)类协方差矩阵不等; (b)所有类协方差矩阵相等。

(1)类条件概率密度函数的数学形式 (|)(,)i i i p N ω∑x μ: 121211(|)exp(()())(2)||2

T

i d i

i p ωπ-=

---∑∑x x μx μ 12(,,....,)T d x x x =x

12()(,,....,),()T d i i E E x μμμμ===μx

2

*{()()}()T ij d d i E σ=--=∑x μx μ 2[()()]ij i i j j E x x σμμ=--=

(2)类协方差矩阵不等

111

g ()()()ln ||ln ()22

T i i i i i i x P ω-=----+∑∑x μx μ

=0T T i i i W ω++x x w x 所有类协方差矩阵相等

1

1g ()()()ln ()2

T i i i i P ω-=---+∑x x μx μ

当()()i j P P ωω=时 1

2g ()()()T i i i γ-==--∑x x μx μ

7.假设在某个地区的疾病普查中,正常细胞1ω和异常细胞2ω的先验概率分别为1()P ω=0.9

2()P ω=0.1现有一待识别细胞,

其观察值为X ,从类概率密度分布曲线上查得1(|)p X ω=0.2

2(|)p X ω=0.4,除已知的数据外,若损失函数的值分别为110L =,126L =,211L =,220L =,试用最小风险贝叶斯决策规则对细胞进行分

类。

后验概率:

1112

1

(|)()

(|)(|)()

j

j

j p X P p x P X P ωωωωω==

∑=0.818 2222

1

(|)()

(|)(|)()

j

j j p X P p x P X P ωωωω

ω==

∑=0.182

计算风险

2

111111221(|)(|)(|)(|)j j j R x L p x L P x L P x αωωω===+∑=1.092

2222112221

(|)(|)(|)(|)j j j R x L p x L P x L P x αωωω===+∑=0.818

决策

1,2,...arg min (|)i i a

R x αα===2 2x ω∈

8 贝叶斯决策程序设计题

BayesTest.java 中的包括读取样本数据,将数据存入Array List中,算样本的两种结果的概率,以及测试样本属于哪一类的概率

JavaBean对样本的属性设置设置get和set函数

模式识别课matlab数字识别程序

名称:模式识别 题目:数字‘3’和‘4’的识别

实验目的与要求: 利用已知的数字样本(3和4),提取样本特征,并确定分类准则,在用测试样本对分类确定准则的错误率进行分析。进一步加深对模式识别方法的理解,强化利用计算机实现模式识别。 实验原理: 1.特征提取原理: 利用MATLAN 软件把图片变为一个二维矩阵,然后对该矩阵进行二值化处理。由于“3”的下半部分在横轴上的投影比“4”的下半部分在横轴上的投影宽,所以可以统计‘3’‘4’在横轴上投影的‘1’的个数作为一个特征。又由于‘4’中间纵向比‘3’的中间‘1’的个数多,所以可以统计‘4’和‘3’中间区域‘1’的个数作为另外一个特征,又考虑‘4’的纵向可能会有点偏,所以在统计一的个数的时候,取的范围稍微大点,但不能太大。 2.分类准则原理: 利用最近邻对测试样本进行分类 实验步骤 1.利用MATLAN 软件把前30个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 2.利用上述矩阵生成特征向量 3.利用MATLAN 软件把后5个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 4.对测试样本进行分类,用F矩阵表示结果,如果是‘1’表示分类正确,‘0’表示分类错误。 5.对分类错误率分析 实验原始程序: f=zeros(5,2) w=zeros(35,2) q=zeros(35,2) for i=1:35 filename_1='D:\MATLAB6p5\toolbox\images\imdemos\3\' filename_2='.bmp' a= num2str (i) b=strcat(filename_1,a) c=strcat(b,filename_2) d=imread(c) e=im2bw(d) n=0 for u=1:20 m=0 for t=32:36 if(e(t,u)==0) m=m+1 end end if(m

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

DX3004模式识别与人工智能--教学大纲概要

《模式识别与人工智能》课程教学大纲 一、课程基本信息 课程代码:DX3004 课程名称:模式识别与人工智能 课程性质:选修课 课程类别:专业与专业方向课程 适用专业:电气信息类专业 总学时: 64 学时 总学分: 4 学分 先修课程:MATLAB程序设计;数据结构;数字信号处理;概率论与数理统计 后续课程:语音处理技术;数字图像处理 课程简介: 模式识别与人工智能是60年代迅速发展起来的一门学科,属于信息,控制和系统科学的范畴。模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。模式识别技术主要分为两大类:基于决策理论的统计模式识别和基于形式语言理论的句法模式识别。模式识别的原理和方法在医学、军事等众多领域应用十分广泛。本课程着重讲述模式识别的基本概念,基本方法和算法原理,注重理论与实践紧密结合,通过大量实例讲述如何将所学知识运用到实际应用之中去,避免引用过多的、繁琐的数学推导。这门课的教学目的是让学生掌握统计模式识别基本原理和方法,使学生具有初步综合利用数学知识深入研究有关信息领域问题的能力。 选用教材: 《模式识别》第二版,边肇祺,张学工等编著[M],北京:清华大学出版社,1999; 参考书目: [1] 《模式识别导论》,齐敏,李大健,郝重阳编著[M]. 北京:清华大学出版社,2009; [2] 《人工智能基础》,蔡自兴,蒙祖强[M]. 北京:高等教育出版社,2005; [3] 《模式识别》,汪增福编著[M]. 安徽:中国科学技术大学出版社,2010; 二、课程总目标 本课程为计算机应用技术专业本科生的专业选修课。通过本课程的学习,要求重点掌握统计模式识别的基本理论和应用。掌握统计模式识别方法中的特征提取和分类决策。掌握特征提取和选择的准则和算法,掌握监督学习的原理以及分类器的设计方法。基本掌握非监督模式识别方法。了解应用人工神经网络和模糊理论的模式识别方法。了解模式识别的应用和系统设计。要求学生掌握本课程的基本理论和方法并能在解决实际问题时得到有效地运用,同时为开发研究新的模式识别的理论和方法打下基础。 三、课程教学内容与基本要求 1、教学内容: (1)模式识别与人工智能基本知识; (2)贝叶斯决策理论; (3)概率密度函数的估计; (4)线性判别函数; (5)非线性胖别函数;

贝叶斯决策理论-模式识别课程作业

研究生课程作业 贝叶斯决策理论 课程名称模式识别 姓名xx 学号xxxxxxxxx 专业软件工程 任课教师xxxx 提交时间2019.xxx 课程论文提交时间:2019 年3月19 日

需附上习题题目 1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系: 先验概率 针对M 个事件出现的可能性而言,不考虑其他任何条件 类条件概率密度函数 是指在已知某类别的特征空间中,出现特 征值X 的概率密度,指第 类样品其属性X 是如何分布的。 后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。贝叶斯公式为 类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。 2. 试写出利用先验概率和分布密度函数计算后验概率的公式 3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。 最小错误率 如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω then 2x ω∈

4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω= 最小错误率贝叶斯决策规则为: If 1...,(|)()max (|)i i j j c p x P P x ωωω==, then i x ω∈ 两类情况: 若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω,则1X ω∈ 若12()()P P ωω,则1X ω∈ 若12(|)(|)p X p X ωω- 则1x ω∈,反之则2x ω∈ 计算条件风险 2 111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 2 222112221 (|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 如果 111122(|)(|)P x P x λωλω+- 211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

模式识别课程设计

模式识别 课程设计 关于黄绿树叶的分类问题 成员:李家伟2015020907010 黄哲2015020907006 老师:程建 学生签字:

一、小组分工 黄哲:数据采集以及特征提取。 李家伟:算法编写设计,完成测试编写报告。 二、特征提取 选取黄、绿树叶各15片,用老师给出的识别算法进行特征提取 %Extract the feature of the leaf clear, close all I = imread('/Users/DrLee/Desktop/kmeans/1.jpg'); I = im2double(I); figure, imshow(I) n = input('Please input the number of the sample regions n:'); h = input('Please input the width of the sample region h:'); [Pos] = ginput(n); SamNum = size(Pos,1); Region = []; RegionFeatureCum = zeros((2*h+1)*(2*h+1)*3,1); RegionFeature = zeros((2*h+1)*(2*h+1)*3,1); for i = 1:SamNum P = round(Pos(i,:)); rectangle('Position', [P(1) P(2) 2*h+1 2*h+1]); hold on Region{i} = I(P(2)-h:P(2)+h,P(1)-h:P(1)+h,:); RegionFeatureCum = RegionFeatureCum + reshape(Region{i},[(2*h+1)*(2*h+1)*3,1]); end hold off RegionFeature = RegionFeatureCum / SamNum 1~15为绿色树叶特征,16~30为黄色树叶特征,取n=3;h=1,表示每片叶子取三个区域,每个区域的特征为3*3*3维的向量,然后变为27*1的列向量,表格如下。

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别课程作业proj03-01

模式识别理论与方法 课程作业实验报告 实验名称:Maximum-Likelihood Parameter Estimation 实验编号:Proj03-01 姓 名: 学 号:规定提交日期:2012年3月27日 实际提交日期:2012年3月27日 摘 要: 参数估计问题是统计学中的经典问题,其中最常用的一种方法是最大似然估计法,最大似然估计是把待估计的参数看作是确定性的量,只是其取值未知。最佳估计就是使得产生已观测到的样本的概率为最大的那个值。 本实验研究的训练样本服从多元正态分布,比较了单变量和多维变量的最大似然估计情况,对样本的均值、方差、协方差做了最大似然估计。 实验结果对不同方式计算出的估计值做了比较分析,得出结论:对均值的最大似然估计 就是对全体样本取平均;协方差的最大似然估计则是N 个)'?x )(?x (u u k k --矩阵的算术平均,对方差2 σ的最大似然估计是有偏估计。 一、 技术论述

(1)高斯情况:∑和u 均未知 实际应用中,多元正态分布更典型的情况是:均值u 和协方差矩阵∑都未知。这样,参数向量θ就由这两个成分组成。 先考虑单变量的情况,其中参数向量θ的组成成分是:221,σθθ==u 。这样,对于单个训练样本的对数似然函数为: 2 12 2 )(212ln 21)(ln θθπθ θ-- - =k k x x p (1) 对上式关于变量θ对导: ???? ? ???????-+--=?=?2 2 2 12 12 2)(21 )(1 )(ln θθθθθθθθk k k x x x p l (2) 运用式l θ?=0,我们得到对于全体样本的对数似然函数的极值条件 0)?(?1 n 112=-∑=k k x θθ (3) 0?) (?11 2 2 2 112 =-+ -∑ ∑==n k k n k x θθθ (4) 其中1?θ,2?θ分别是对于1θ,2θ的最大似然估计。 把1?θ,2?θ用u ?,2?σ代替,并进行简单的整理,我们得到下述的对于均值和方差的最大似然估计结果 ∑==n k k x n u 1 1 ? (5) 2 1 2 )?(1 ?∑=-= n k k u x n σ (6) 当高斯函数为多元时,最大似然估计的过程也是非常类似的。对于多元高斯分布的均值u 和协方差矩阵∑的最大似然估计结果为: ∑=1 1 ?n k x n u (7) t k n k k u x u x )?()?(n 1 ?1 --=∑ ∑= (8) 二、 实验结果

《模式识别基础》课程标准

《模式识别基础》课程标准 (执笔人:刘雨审阅学院:电子科学与工程学院)课程编号:08113 英文名称:Pattern Recognition 预修课程:高等数学,线性代数,概率论与数理统计,程序设计 学时安排:40学时,其中讲授32学时,实践8学时。 学分:2 一、课程概述 (一)课程性质地位 模式识别课基础程是军事指挥类本科生信息工程专业的专业基础课,通信工程专业的选修课。在知识结构中处于承上启下的重要位置,对于巩固已学知识、开展专业课学习及未来工作具有重要意义。课程特点是理论与实践联系密切,是培养学生理论素养、实践技能和创新能力的重要环节。是以后工作中理解、使用信息战中涉及的众多信息处理技术的重要知识储备。 本课程主要介绍统计模式识别的基本理论和方法,包括聚类分析,判别域代数界面方程法,统计判决、训练学习与错误率估计,最近邻方法以及特征提取与选择。 模式识别是研究信息分类识别理论和方法的学科,综合性、交叉性强。从内涵讲,模式识别是一门数据处理、信息分析的学科,从应用讲,属于人工智能、机器学习范畴。理论上它涉及的数学知识较多,如代数学、矩阵论、函数论、概率统计、最优化方法、图论等,用到信号处理、控制论、计算机技术、生理物理学等知识。典型应用有文字、语音、图像、视频机器识别,雷达、红外、声纳、遥感目标识别,可用于军事、侦探、生物、天文、地质、经济、医学等众多领域。 (二)课程基本理念 以学生为主体,教师为主导,精讲多练,以用促学,学以致用。使学生理解模式识别的本质,掌握利用机器进行信息识别分类的基本原理和方法,在思、学、用、思、学、用的循环中,达到培养理论素养,锻炼实践技能,激发创新能力的目的。 (三)课程设计思路 围绕培养科技底蕴厚实、创新能力突出的高素质人才的目标,本课程的培养目标是:使学生掌握统计模式识别的基本原理和方法,了解其应用领域和发展动态,达到夯实理论基础、锻炼理论素养及实践技能、激发创新能力的目的。 模式识别是研究分类识别理论和方法的学科,综合性、交叉性强,涉及的数学知识多,应用广。针对其特点,教学设计的思路是:以模式可分性为核心,模式特征提取、学习、分类为主线,理论上分层次、抓重点,方法上重比较、突出应用适应性。除了讲授传统的、经典的重要内容之外,结合科研成果,介绍不断出现的新理论、新方法,新技术、新应用,开拓学生视野,激发学习兴趣,培养创新能力。 教学设计以章为单元,用实际科研例子为引导,围绕基本原理展开。选择两个以上基本方法,辅以实验,最后进行对比分析、归纳总结。使学生在课程学习中达到一个思、学、用、

第二章 贝叶斯决策理论与统计判别方法汇总

第二章贝叶斯决策理论与统计判别方法 课前思考 1、机器自动识别分类,能不能避免错分类,如汉字识别能不能做到百分之百正确?怎样才能减少错误? 2、错分类往往难以避免,因此就要考虑减小因错分类造成的危害损失,譬如对病理切片进行分析,有可能将正确切片误判为癌症切片,反过来也可能将癌症病人误判为正常人,这两种错误造成的损失一样吗?看来后一种错误更可怕,那么有没有可能对后一种错误严格控制? 3、概率论中讲的先验概率,后验概率与概率密度函数等概念还记得吗?什么是贝叶斯公式? 4、什么叫正态分布?什么叫期望值?什么叫方差?为什么说正态分布是最重要的分布之一? 学习目标 这一章是模式识别的重要理论基础,它用概率论的概念分析造成错分类和识别错误的根源,并说明与哪些量有关系。在这个基础上指出了什么条件下能使错误率最小。有时不同的错误分类造成的损失会不相同,因此如果错分类不可避免,那么有没有可能对危害大的错分类实行控制。对于这两方面的概念要求理解透彻。

这一章会将分类与计算某种函数联系起来,并在此基础上定义了一些术语,如判别函数、决策面(分界面),决策域等,要正确掌握其含义。 这一章会涉及设计一个分类器的最基本方法——设计准则函数,并使所设计的分类器达到准则函数的极值,即最优解,要理解这一最基本的做法。这一章会开始涉及一些具体的计算,公式推导、证明等,应通过学习提高这方面的理解能力,并通过习题、思考题提高自己这方面的能力。 本章要点 1、机器自动识别出现错分类的条件,错分类的可能性如何计算,如何实现使错分类出现可能性最小——基于最小错误率的Bayes决策理论 2、如何减小危害大的错分类情况——基于最小错误风险的Bayes决策理论 3、模式识别的基本计算框架——制定准则函数,实现准则函数极值化的分类器设计方法 4、正态分布条件下的分类器设计 5、判别函数、决策面、决策方程等术语的概念 6、Bayes决策理论的理论意义与在实践中所遇到的困难 知识点

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

贝叶斯决策理论的Matlab实现

第二章 1、简述基于最小错误率的贝叶斯决策理论;并分析在“大数据时代”,使用贝叶斯决策理论需要解决哪些问 题,贝叶斯决策理论有哪些优缺点,贝叶斯决策理论适用条件和范围是什么?举例说明风险最小贝叶斯决策理论的意义。 答:在大数据时代,我们可以获得很多的样本数据,并且是已经标记好的;要使用贝叶斯决策理论最重要的是确定类条件概率密度函数和相关的参数。 优缺点:贝叶斯决策的优点是思路比较简单,大数据的前提下我们可以得到较准确的先验概率, 因此如果确定了类条件概率密度函数,我们便可以很快的知道如何分类,但是在大数据的前提下,类条件概率密度函数的确定不是这么简单,因为参数可能会增多,有时候计算量也是很大的。 适用条件和范围: (1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。 (2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进 行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。 第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率 密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。 说明风险最小贝叶斯决策理论的意义: 那股票举例,现在有A、B两个股票,根据市场行情结合最小错误率的风险选择A股(假设为0.55),而B股(0.45);但是选着A股必须承担着等级为7的风险,B股风险等级仅为4;这时因遵循最 小风险的贝叶斯决策,毕竟如果A股投资的失败带来的经济损失可能获得收益还大。 2、教材中例2.1-2.2的Matlab实现. 2.1:结果:

模式识别作业Homework#2

Homework #2 Note:In some problem (this is true for the entire quarter) you will need to make some assumptions since the problem statement may not fully specify the problem space. Make sure that you make reasonable assumptions and clearly state them. Work alone: You are expected to do your own work on all assignments; there are no group assignments in this course. You may (and are encouraged to) engage in general discussions with your classmates regarding the assignments, but specific details of a solution, including the solution itself, must always be your own work. Problem: In this problem we will investigate the importance of having the correct model for classification. Load file hw2.mat and open it in Matlab using command load hw2. Using command whos, you should see six array c1, c2, c3 and t1, t2, t3, each has size 500 by 2. Arrays c1, c2, c3 hold the training data, and arrays t1, t2, t3 hold the testing data. That is arrays c1, c2, c3 should be used to train your classifier, and arrays t1, t2, t3 should be used to test how the classifier performs on the data it hasn’t seen. Arrays c1 holds training data for the first class, c2 for the second class, c3 for the third class. Arrays t1, t2, t3 hold the test data, where the true class of data in t1, t2, t3 comes from the first, second, third classed respectively. Of course, array ci and ti were drawn from the same distribution for each i. Each training and testing example has 2 features. Thus all arrays are two dimensional, the number of rows is equal to the number of examples, and there are 2 columns, column 1 has the first feature, column 2 has the second feature. (a)Visualize the examples by using Matlab scatter command a plotting each class in different color. For example, for class 1 use scatter(c1(:,1),c1(:,2),’r’);. Other possible colors can be found by typing help plot. (b)From the scatter plot in (a), for which classes the multivariate normal distribution looks like a possible model, and for which classes it is grossly wrong? If you are not sure how to answer this part, do parts (c-d) first. (c)Suppose we make an erroneous assumption that all classed have multivariate normal Nμ. Compute the Maximum Likelihood estimates for the means and distributions()∑, covariance matrices (remember you have to do it separately for each class). Make sure you use only the training data; this is the data in arrays c1, c2, and c3. (d)You can visualize what the estimated distributions look like using Matlab contour(). Recall that the data should be denser along the smaller ellipse, because these are closer to the estimated mean. (e)Use the ML estimates from the step (c) to design the ML classifier (this is the Bayes classifier under zero-one loss function with equal priors). Thus we are assuming that priors are the same for each class. Now classify the test example (that is only those

北工大模式识别基础课程作业

姓名:学号: 2.1 设有10个二维模式样本,如图2.13所示。若21=θ,试用最大最小距离算 法对他们进行聚类分析。 1 3 5 7 9 X 1

解:① 取T 11]0,0[==X Z 。 ②选离1Z 最远的样本作为第二聚类中心2Z 。 ()()201012221=-+-=D ,831=D ,5841=D ,4551=D 5261=D ,7471=D ,4581=D ,5891=D ,651,10=D ∵ 最大者为D 71,∴T 72]7,5[==X Z 742 121=-=Z Z θT ③计算各样本与{}21,Z Z 间距离,选出其中的最小距离。 7412=D ,5222=D ,3432=D ,…,132,10=D }13,20,17,0,2,5,4,8,2,0{),min(21=i i D D ④742 120)},max{min(9221=>==T D D D i i ,T 93]3,7[==∴X Z ⑤继续判断是否有新的聚类中心出现: ?????===58740131211D D D ,???????===40522232221D D D ,…???????===1 13653,102,101,10D D D }1,0,1,0,2,5,4,8,2,0{),,min(321=i i i D D D 742 18)},,max{min(31321=

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

模式识别课程设计教学内容

模式识别课程设计

模式识别课程设计 聚类图像分割 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。 图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结

果很大程度上依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。 二.常用的图像分割方法 1.基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

      专题文章
        CopyRight 2018-2019 实验室设备网 版权所有