支持向量机原理之线性SVM与非线性SVM 您所在的位置:网站首页 支持向量机模型的优缺点是什么 支持向量机原理之线性SVM与非线性SVM

支持向量机原理之线性SVM与非线性SVM

2024-07-17 11:38| 来源: 网络整理| 查看: 265

一、什么是SVM?

SVM的英文全称是Support Vector Machines,我们叫它支持向量机。支持向量机是我们用于分类的一种算法。让我们以一个小故事的形式,开启我们的SVM之旅吧。

在很久以前的情人节,一位大侠要去救他的爱人,但天空中的魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

img

于是大侠这样放,干的不错?

img

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。显然,大侠需要对棍做出调整。

img

SVM就是试图把棍在最佳位置,好让在棍的两边有尽可能大的间隙。这个间隙就是球到棍的距离。

img

现在好了,即使魔鬼放了更多的球,棍仍然是一个好的分界线。

img

魔鬼看到大侠已经学会了一个trick(方法、招式),于是魔鬼给了大侠一个新的挑战。

img

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。

img

现在,从空中的魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

img

再之后,无聊的大人们,把这些球叫做data,把棍子叫做classifier, 找到最大间隙的trick叫做optimization,拍桌子叫做kernelling, 那张纸叫做hyperplane。

概述一下:

当一个分类问题,数据是线性可分的,也就是用一根棍就可以将两种小球分开的时候,我们只要将棍的位置放在让小球距离棍的距离最大化的位置即可,寻找这个最大间隔的过程,就叫做最优化。但是,现实往往是很残酷的,一般的数据是线性不可分的,也就是找不到一个棍将两种小球很好的分类。这个时候,我们就需要像大侠一样,将小球拍起,用一张纸代替小棍将小球进行分类。想要让数据飞起,我们需要的东西就是核函数(kernel),用于切分小球的纸,就是超平面。

也许这个时候,你还是似懂非懂,没关系。根据刚才的描述,可以看出,问题是从线性可分延伸到线性不可分的。那么,我们就按照这个思路,进行原理性的剖析。

二、线性SVM 先看下线性可分的二分类问题。 img

上图中的(a)是已有的数据,红色和蓝色分别代表两个不同的类别。数据显然是线性可分的,但是将两类数据点分开的直线显然不止一条。上图的(b)和©分别给出了B、C两种不同的分类方案,其中黑色实线为分界线,术语称为“决策面”。每个决策面对应了一个线性分类器。虽然从分类结果上看,分类器A和分类器B的效果是相同的。但是他们的性能是有差距的,看下图:

img

在"决策面"不变的情况下,我又添加了一个红点。可以看到,分类器B依然能很好的分类结果,而分类器C则出现了分类错误。显然分类器B的"决策面"放置的位置优于分类器C的"决策面"放置的位置,SVM算法也是这么认为的,它的依据就是分类器B的分类间隔比分类器C的分类间隔大。

这里涉及到第一个SVM独有的概念"分类间隔"。在保证决策面方向不变且不会出现错分样本的情况下移动决策面,会在原来的决策面两侧找到两个极限位置(越过该位置就会产生错分现象),如虚线所示。虚线的位置由决策面的方向和距离原决策面最近的几个样本的位置决定。而这两条平行虚线正中间的分界线就是在保持当前决策面方向不变的前提下的最优决策面。

两条虚线之间的垂直距离就是这个最优决策面对应的分类间隔。显然每一个可能把数据集正确分开的方向都有一个最优决策面(有些方向无论如何移动决策面的位置也不可能将两类样本完全分开),而不同方向的最优决策面的分类间隔通常是不同的,那个具有“最大间隔”的决策面就是SVM要寻找的最优解。

而这个真正的最优解对应的两侧虚线所穿过的样本点,就是SVM中的支持样本点,称为"支持向量"。

数学建模

求解这个"决策面"的过程,就是最优化。一个最优化问题通常有两个基本的因素:

1)目标函数,也就是你希望什么东西的什么指标达到最好;

2)优化对象,你期望通过改变哪些因素来使你的目标函数达到最优。

在线性SVM算法中,目标函数显然就是那个"分类间隔",而优化对象则是决策面。所以要对SVM问题进行数学建模,首先要对上述两个对象(“分类间隔"和"决策面”)进行数学描述。按照一般的思维习惯,我们先描述决策面。

数学建模的时候,先在二维空间建模,然后再推广到多维。

(1)"决策面"方程

我们都知道二维空间下一条直线的方式如下所示:

img

现在我们做个小小的改变,让原来的x轴变成x1,y轴变成x2。

img

移项得:

img

将公式向量化得:

img

进一步向量化,用w列向量和x列向量和标量γ进一步向量化:

img

其中,向量w和x分别为:

img

这里w1=a,w2=-1。我们都知道,最初的那个直线方程a和b的几何意义,a表示直线的斜率,b表示截距,a决定了直线与x轴正方向的夹角,b决定了直线与y轴交点位置。那么向量化后的直线的w和r的几何意义是什么呢?

现在假设:

img

可得:

img

在坐标轴上画出直线和向量w:

img

蓝色的线代表向量w,红色的先代表直线y。我们可以看到向量w和直线的关系为垂直关系。这说明了向量w也控制这直线的方向,只不过是与这个直线的方向是垂直的。标量γ的作用也没有变,依然决定了直线的截距。此时,我们称w为直线的法向量。

二维空间的直线方程已经推导完成,将其推广到n为空间,就变成了超平面方程。(一个超平面,在二维空间的例子就是一个直线)但是它的公式没变,依然是:

img

不同之处在于:

img

我们已经顺利推导出了"决策面"方程,它就是我们的超平面方程,之后,我们统称其为超平面方程。

(2)"分类间隔"方程

现在,我们依然对于一个二维平面的简单例子进行推导。

img

我们已经知道间隔的大小实际上就是支持向量对应的样本点到决策面的距离的二倍。那么图中的距离d我们怎么求?我们高中都学过,点到直线的距离距离公式如下:

img

公式中的直线方程为Ax0+By0+C=0,点P的坐标为(x0,y0)。

现在,将直线方程扩展到多维,求得我们现在的超平面方程,对公式进行如下变形:

img

这个d就是"分类间隔"。其中||w||表示w的二范数,求所有元素的平方和,然后再开方。比如对于二维平面:

img

那么,

img

我们目的是为了找出一个分类效果好的超平面作为分类器。分类器的好坏的评定依据是分类间隔W=2d的大小,即分类间隔W越大,我们认为这个超平面的分类效果越好。此时,求解超平面的问题就变成了求解分类间隔W最大化的为题。W的最大化也就是d最大化的。

(3)约束条件

看起来,我们已经顺利获得了目标函数的数学形式。但是为了求解w的最大值。我们不得不面对如下问题:

我们如何判断超平面是否将样本点正确分类?我们知道相求距离d的最大值,我们首先需要找到支持向量上的点,怎么在众多的点中选出支持向量上的点呢?

上述我们需要面对的问题就是约束条件,也就是说我们优化的变量d的取值范围受到了限制和约束。事实上约束条件一直是最优化问题里最让人头疼的东西。但既然我们已经知道了这些约束条件确实存在,就不得不用数学语言对他们进行描述。但SVM算法通过一些巧妙的小技巧,将这些约束条件融合到一个不等式里面。

这个二维平面上有两种点,我们分别对它们进行标记:

红颜色的圆点标记为1,我们人为规定其为正样本;蓝颜色的五角星标记为-1,我们人为规定其为负样本。

对每个样本点xi加上一个类别标签yi:

img

如果我们的超平面方程能够完全正确地对上图的样本点进行分类,就会满足下面的方程:

img

如果我们要求再高一点,假设决策面正好处于间隔区域的中轴线上,并且相应的支持向量对应的样本点到决策面的距离为d,那么公式进一步写成:

img

上述公式的解释就是,对于所有分类标签为1的样本点,它们到直线的距离都大于等于d(支持向量上的样本点到超平面的距离)。对于所有分类标签为-1的样本点,它们到直线的距离都小于等于d。公式两边都除以d,就可以得到:

img

其中,

img

因为||w||和d都是标量。所上述公式的两个矢量,依然描述一条直线的法向量和截距。

img

上述两个公式,都是描述一条直线,数学模型代表的意义是一样的。

现在,让我们对wd和γd重新起个名字,就叫它们w和γ。

因此,我们就可以说:“对于存在分类间隔的两类样本点,我们一定可以找到一些超平面面,使其对于所有的样本点均满足下面的条件:”

img

上述方程即给出了SVM最优化问题的约束条件。这时候,可能有人会问了,为什么标记为1和-1呢?因为这样标记方便我们将上述方程变成如下形式:

img

正是因为标签为1和-1,才方便我们将约束条件变成一个约束方程,从而方便我们的计算。

(4)线性SVM优化问题基本描述

现在整合一下思路,我们已经得到我们的目标函数:

img

我们的优化目标是是d最大化。我们已经说过,我们是用支持向量上的样本点(决策面线上的点)求解d的最大化的问题的。那么支持向量上的样本点有什么特点呢?

img

你赞同这个观点吗?所有支持向量上的样本点,都满足如上公式。如果不赞同,请重看"分类间隔"方程推导过程。

现在我们就可以将我们的目标函数进一步化简:

img

因为,我们只关心支持向量上的点。随后我们求解d的最大化问题变成了||w||的最小化问题。进而||w||的最小化问题等效于

img

为什么要做这样的等效呢?这是为了在进行最优化的过程中对目标函数求导时比较方便,但这绝对不影响最优化问题最后的求解。我们将最终的目标函数和约束条件放在一起进行描述:

img

这里n是样本点的总个数,缩写s.t.表示"Subject to",是"服从某某条件"的意思。上述公式描述的是一个典型的不等式约束条件下的二次型函数优化问题,同时也是支持向量机的基本数学模型。

(5)求解准备

我们已经得到支持向量机的基本数学模型,接下来的问题就是如何根据数学模型,求得我们想要的最优解。在学习求解方法之前,我们得知道一点,想用我下面讲述的求解方法有一个前提,就是我们的目标函数必须是凸函数。理解凸函数,我们还要先明确另一个概念,凸集。在凸几何中,凸集(convex set)是在)凸组合下闭合的放射空间的子集。看一幅图可能更容易理解:

img

左右量图都是一个集合。**如果集合中任意2个元素连线上的点也在集合中,那么这个集合就是凸集。**显然,上图中的左图是一个凸集,上图中的右图是一个非凸集。

凸函数的定义也是如此,其几何意义表示为函数任意两点连线上的值大于对应自变量处的函数值。若这里凸集C即某个区间L,那么,设函数f为定义在区间L上的函数,若对L上的任意两点x1,x2和任意的实数λ,λ属于(0,1),总有:

img

则函数f称为L上的凸函数,当且仅当其上镜图(在函数图像上方的点集)为一个凸集。再看一幅图,也许更容易理解:

img

像上图这样的函数,它整体就是一个非凸函数,我们无法获得全局最优解的,只能获得局部最优解。比如红框内的部分,如果单独拿出来,它就是一个凸函数。对于我们的目标函数:

img

很显然,它是一个凸函数。所以,可以使用我接下来讲述的方法求取最优解。

通常我们需要求解的最优化问题有如下几类:

无约束优化问题,可以写为: img

- 有等式约束的优化问题,可以写为:

img

- 有不等式约束的优化问题可以写为:

img

对于第(a)类的优化问题,尝尝使用的方法就是费马大定理(Fermat),即使用求取函数f(x)的导数,然后令其为零,可以求得候选最优值,再在这些候选值中验证;如果是凸函数,可以保证是最优解。这也就是我们高中经常使用的求函数的极值的方法。

对于第(b)类的优化问题,常常使用的方法就是拉格朗日乘子法(Lagrange Multiplier) ,即把等式约束h_i(x)用一个系数与f(x)写为一个式子,称为拉格朗日函数,而系数称为拉格朗日乘子。通过拉格朗日函数对各个变量求导,令其为零,可以求得候选值集合,然后验证求得最优值。

对于第©类的优化问题,常常使用的方法就是KKT条件。同样地,我们把所有的等式、不等式约束与f(x)写为一个式子,也叫拉格朗日函数,系数也称拉格朗日乘子,通过一些条件,可以求出最优值的必要条件,这个条件称为KKT条件。

必要条件和充要条件如果不理解,可以看下面这句话:

A的必要条件就是A可以推出的结论A的充分条件就是可以推出A的前提

了解到这些,现在让我们再看一下我们的最优化问题:

img

现在,我们的这个对优化问题属于哪一类?很显然,它属于第©类问题。因为,在学习求解最优化问题之前,我们还要学习两个东西:拉格朗日函数和KKT条件。

(6)拉格朗日函数

首先,我们先要从宏观的视野上了解一下拉格朗日对偶问题出现的原因和背景。

我们知道我们要求解的是最小化问题,所以一个直观的想法是如果我能够构造一个函数,使得该函数在可行解区域内与原目标函数完全一致,而在可行解区域外的数值非常大,甚至是无穷大,那么这个没有约束条件的新目标函数的优化问题就与原来有约束条件的原始目标函数的优化问题是等价的问题。这就是使用拉格朗日方程的目的,它将约束条件放到目标函数中,从而将有约束优化问题转换为无约束优化问题。

随后,人们又发现,使用拉格朗日获得的函数,使用求导的方法求解依然困难。进而,需要对问题再进行一次转换,即使用一个数学技巧:拉格朗日对偶。

所以,显而易见的是,我们在拉格朗日优化我们的问题这个道路上,需要进行下面二个步骤:

将有约束的原始目标函数转换为无约束的新构造的拉格朗日目标函数使用拉格朗日对偶性,将不易求解的优化问题转化为易求解的优化

下面,进行第一步:将有约束的原始目标函数转换为无约束的新构造的拉格朗日目标函数

公式变形如下:

img

其中αi是拉格朗日乘子,αi大于等于0,是我们构造新目标函数时引入的系数变量(我们自己设置)。现在我们令:

img

当样本点不满足约束条件时,即在可行解区域外:

img

此时,我们将αi设置为正无穷,此时θ(w)显然也是正无穷。

当样本点满足约束条件时,即在可行解区域内:

img

此时,显然θ(w)为原目标函数本身。我们将上述两种情况结合一下,就得到了新的目标函数:

img

此时,再看我们的初衷,就是为了建立一个在可行解区域内与原目标函数相同,在可行解区域外函数值趋近于无穷大的新函数,现在我们做到了。

现在,我们的问题变成了求新目标函数的最小值,即:

img

这里用p*表示这个问题的最优值,且和最初的问题是等价的。

接下来,我们进行第二步:将不易求解的优化问题转化为易求解的优化

我们看一下我们的新目标函数,先求最大值,再求最小值。这样的话,我们首先就要面对带有需要求解的参数w和b的方程,而αi又是不等式约束,这个求解过程不好做。所以,我们需要使用拉格朗日函数对偶性,将最小和最大的位置交换一下,这样就变成了:

img

交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用d来表示。而且d(x,y,x2+y2)后,在三维空间的点的分布为:

img

可见红色和蓝色的点被映射到了不同的平面,在更高维空间中是线性可分的(用一个平面去分割)。

上述例子中的样本点的分布遵循圆的分布。继续推广到椭圆的一般样本形式:

img

上图的两类数据分布为两个椭圆的形状,这样的数据本身就是不可分的。不难发现,这两个半径不同的椭圆是加上了少量的噪音生成得到的。所以,一个理想的分界应该也是一个椭圆,而不是一个直线。如果用X1和X2来表示这个二维平面的两个坐标的话,我们知道这个分界椭圆可以写为:

img

这个方程就是高中学过的椭圆一般方程。注意上面的形式,如果我们构造另外一个五维的空间,其中五个坐标的值分别为:

img

那么,显然我们可以将这个分界的椭圆方程写成如下形式:

img

这个关于新的坐标Z1,Z2,Z3,Z4,Z5的方程,就是一个超平面方程,它的维度是5。也就是说,如果我们做一个映射 ϕ : 二维 → 五维,将 X1,X2按照上面的规则映射为 Z1,Z2,··· ,Z5,那么在新的空间中原来的数据将变成线性可分的,从而使用之前我们推导的线性分类算法就可以进行处理了。

我们举个简单的计算例子,现在假设已知的映射函数为:

img

这个是一个从2维映射到5维的例子。如果没有使用核函数,根据上一小节的介绍,我们需要先结算映射后的结果,然后再进行内积运算。那么对于两个向量a1=(x1,x2)和a2=(y1,y2)有:

img

另外,如果我们不进行映射计算,直接运算下面的公式:

img

你会发现,这两个公式的计算结果是相同的。区别在于什么呢?

一个是根据映射函数,映射到高维空间中,然后再根据内积的公式进行计算,计算量大;另一个则直接在原来的低维空间中进行计算,而不需要显式地写出映射后的结果,计算量小。

其实,在这个例子中,核函数就是:

img

我们通过k(x1,x2)的低维运算得到了先映射再内积的高维运算的结果,这就是核函数的神奇之处,它有效减少了我们的计算量。在这个例子中,我们对一个2维空间做映射,选择的新的空间是原始空间的所以一阶和二阶的组合,得到了5维的新空间;如果原始空间是3维的,那么我们会得到19维的新空间,这个数目是呈爆炸性增长的。如果我们使用ϕ(·)做映射计算,难度非常大,而且如果遇到无穷维的情况,就根本无从计算了。所以使用核函数进行计算是非常有必要的。

3 核技巧的实现

通过核技巧的转变,我们的分类函数变为:

img

我们的对偶问题变成了:

img

这样,我们就避开了高纬度空间中的计算。当然,我们刚刚的例子是非常简单的,我们可以手动构造出来对应映射的核函数出来,如果对于任意一个映射,要构造出对应的核函数就很困难了。因此,通常,人们会从一些常用的核函数中进行选择,根据问题和数据的不同,选择不同的参数,得到不同的核函数。接下来,要介绍的就是一个非常流行的核函数,那就是径向基核函数。

径向基核函数是SVM中常用的一个核函数。径向基核函数采用向量作为自变量的函数,能够基于向量举例运算输出一个标量。径向基核函数的高斯版本的公式如下:

img

其中,σ是用户自定义的用于确定到达率(reach)或者说函数值跌落到0的速度参数。上述高斯核函数将数据从原始空间映射到无穷维空间。关于无穷维空间,我们不必太担心。高斯核函数只是一个常用的核函数,使用者并不需要确切地理解数据到底是如何表现的,而且使用高斯核函数还会得到一个理想的结果。如果σ选得很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果σ选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调控参数σ,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。

六 总结 1 SVM的优缺点 优点 可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。 缺点 对参数调节和和函数的选择敏感。 参考资料: [1] 五岁小孩也能看懂的SVM:https://www.zhihu.com/question/21094489/answer/8627319[2] 五岁小孩也能看懂的SVM :https://www.reddit.com/r/MachineLearning/comments/15zrpp/please_explain_support_vector_machines_svm_like_i/[3] pluskid大牛博客:http://blog.pluskid.org/?page_id=683[4] 陈东岳老师文章:https://zhuanlan.zhihu.com/p/24638007[5] 深入理解拉格朗日乘子法和KKT条件:http://blog.csdn.net/xianlingmao/article/details/7919597[6] 充分条件和必要条件:https://www.zhihu.com/question/30469121[7] 凸函数:https://zh.wikipedia.org/wiki/%E5%87%B8%E5%87%BD%E6%95%B0[8]《机器学习实战》第6章内容。[9] SVM之SMO算法:http://www.cnblogs.com/zangrunqiang/p/5515872.html


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

      专题文章
        CopyRight 2018-2019 实验室设备网 版权所有