[算法] 二分图最小点覆盖构造方案+Konig定理证明 您所在的位置:网站首页 找点找点时间 [算法] 二分图最小点覆盖构造方案+Konig定理证明

[算法] 二分图最小点覆盖构造方案+Konig定理证明

2023-08-27 21:33| 来源: 网络整理| 查看: 265

前言

博主很笨 ,如有纰漏,欢迎在评论区指出讨论。

二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, \(e\) 为二分图中的边数。若是匈牙利算法,时间复杂度为 \(O(nm)\) , \(m\) 为二分图中右部点的数量,不建议使用。

文章中的例题链接。

König定理

定理内容:二分图最小点覆盖的点的数量等于二分图最大匹配的边的数量。

构造方法 \(+\) 简单证明:

首先求出二分图中的最大匹配,建议使用 \(Dinic\) 。

从每一个非匹配点出发,沿着非匹配边正向进行遍历,沿着匹配边反向进行遍历到的点进行标记。选取左部点中没有被标记过的点,右部点中被标记过的点,则这些点可以形成该二分图的最小点覆盖。

遍历代码实现如下:

void dfs(int now) { vis[now] = true; int SIZ = v[now].size(); for(int i = 0; i < SIZ; i++) { int next = v[now][i].to; if(vis[next] || !v[now][i].val)//正向边的容量为0说明是匹配边,反向边的容量为0说明是非匹配边 continue; dfs(next); } }

那么就有以下性质:

若该点为左边的非匹配点,则这个点必被访问,因为这个点是整个 \(dfs\) 的起点 若该点为右边的非匹配点,则这个点必不会被访问,若是由左边的非匹配点才到达了这个点,那么可以将这条边变为匹配边,则匹配数 \(+1\) ,与最大匹配相冲突。若是左边的匹配点才到达了这个点,那么这个点的路径为左边非匹配点 → 右边匹配点 → 左边非匹配点 → 右边匹配点 → …… → 左边匹配点 → 右边非匹配点 ,很明显,上述路径为增广路,与最大匹配相冲突。所以,右边的非匹配点必不会被访问。 对于一组匹配点,要么两个都被标记,要么都不被标记。因为左部的匹配点是由右部的匹配点来遍历到的,出现必然成双成对。

有了上述的三条性质,可以发现:按照选取左部点中没有被标记过的点,右部点中被标记过的点的规则,选出来的点的点数必然为最大匹配的边数。左部的非匹配点必然被访问,则必不会被选,右部的非匹配点必不会被访问,则必不会被选。而第三条性质决定了,对于一组匹配点,会选择有且仅有一个点。故而选出的点的点数等于最大匹配的边数。

其次需要解决一个问题:保证这些点覆盖了所有的边。具体可以分为四类:

左部为非匹配点,右部为非匹配点。性质二已经讨论过,不可能出现这种情况,出现就不满足最大匹配的前提。 左部为匹配点,右部为非匹配点。同理性质二,路径类似,会出现增广路,那么这个左部的匹配点一定没有被访问过,必然被选。 左部为匹配点,右部为匹配点。若构成匹配边,一对匹配点中必选一个。若不构成匹配边,也是合法的,选法有四种,以下进行讨论。在这里插入图片描述 选左上,右上。不会出现这种情况,选左上意味着左上未被访问,那么右下未被访问,则左下也没被访问,对应的右上没被访问,则右上没被选,矛盾。 选左下,右下。不会出现这种情况,选左下意味着左下未被访问,同理发现矛盾。 选右下,右上。全部边都被覆盖,合法 选左上,左下。同理合法。 左部为非匹配点,右部为匹配点。这条边为非匹配边,而起点就是从左部的非匹配点点开始,那么右部的这个点必然被访问过,必然被选。

最后在确保这是最小的方案:反证法,少选一个点,那么至少有一条匹配边会被不选,不满足点覆盖的定义,矛盾。也就是说,至少每一条匹配边都需要选一个点。

如上,证毕。

题目来源:COCI 2019/2020 Contest #6 T4. Skandi

题目大意

给定一个 \(n\times m\) 的矩阵,其中的白色点为 \(0\) , 黑色点为 \(1\) 。黑色点可以往下一直扩展到底部,把白色点变成蓝色点,直到遇到黑色点为止。同理,也可向右扩展。问整个矩阵经过最小多少次扩展才能扩展为整个矩阵到不存在白色,并打印出每次扩展是从哪个点开始的,并打印出扩展方向。题目满足第一行第一列一定为黑色点。

思路

一道建模题。

一个白色点变为蓝色点只有两种方法,从它上方或左方的黑色点扩展而来,且只需要一个点扩展即可。可以考虑到最小点覆盖问题。

由于对于一个黑色点来说,它可以往右或往下扩展。那么它就有两个身份,也就是说一个点拥有两个编号。一个编号为把整个矩阵拉成一条链的顺序,另一个编号为前一个编号 \(+n\times m\) ,这样不会发生冲突。获得编号的函数:

int GetHash(int i, int j) { return (i - 1) * m + j; }

那么不难发现一个白色点,与其相关的是一个编号 \(\leqslant n\times m\) 的点,和一个编号 \(>n\times m\) 的点。把这两个点连接起来,就是一张二分图。

问题就转换为找这张图的最小点覆盖问题。使用 \(Dinic\) ,在根据上述 \(König\) 定理构造即可。

边数为白点的个数,左部点为黑点的个数,则时间复杂度为 \(O(nm\sqrt{nm})\) ,即 \(O(n^{\frac{3}{2}}m^{\frac{3}{2}})\) ,本题的 \(n\) , \(m\) 均小于 \(500\) ,大概能够在 \(1s\) 内求出答案。

C++代码 #include #include #include #include #include using namespace std; #define INF 0x3f3f3f3f const int MAXN = 1e6 + 5; const int MAXM = 5e2 + 5; struct Node { int to, val, rev;//依次为:下一个点,边的容量,相反的边的编号 Node() {} Node(int T, int V, int R) { to = T; val = V; rev = R; } }; vector v[MAXN];//用vector存图的癖好... int dn[MAXN], rt[MAXN];//预处理白色点可以由哪两个点扩展而来 queue q; int de[MAXN], be[MAXN]; int twin[MAXN]; bool vis[MAXN]; int n, m, s, t; int arr[MAXM][MAXM]; bool bfs() {//将残量网络分层 bool flag = 0; memset(de, 0, sizeof(de)); while(!q.empty()) q.pop(); q.push(s); de[s] = 1; be[s] = 0; while(!q.empty()) { int now = q.front(); q.pop(); int SIZ = v[now].size(); for(int i = 0; i < SIZ; i++) { int next = v[now][i].to; if(v[now][i].val && !de[next]) { q.push(next); be[next] = 0; de[next] = de[now] + 1; if(next == t) flag = 1; } } } return flag; } int dfs(int now, int flow) {//沿着增广路增广 if(now == t || !flow) return flow; int i, surp = flow; int SIZ = v[now].size(); for(i = be[now]; i < SIZ && surp; i++) { be[now] = i; int next = v[now][i].to; if(v[now][i].val && de[next] == de[now] + 1) { int maxnow = dfs(next, min(surp, v[now][i].val)); if(!maxnow) de[next] = 0; v[now][i].val -= maxnow; v[next][v[now][i].rev].val += maxnow; surp -= maxnow; } } return flow - surp; } int Dinic() {//网络最大流,亦可用于匈牙利,时间限制5s int res = 0; int flow = 0; while(bfs()) while(flow = dfs(s, INF)) res += flow; return res; } int GetHash(int i, int j) {//获取点的编号 return (i - 1) * m + j; } void Down(int now, int i, int j) {//黑点向下扩展,每个白点最多遍历到一次 if(i != now) dn[GetHash(now, j)] = GetHash(i, j); if(arr[now + 1][j] == 2) Down(now + 1, i, j); } void Right(int now, int i, int j) { //黑点向右扩展,每个白点最多遍历到一次 if(j != now) rt[GetHash(i, now)] = GetHash(i, j) + n * m; if(arr[i][now + 1] == 2) Right(now + 1, i, j); } void GetMin(int now) {//dfs求构造方式 vis[now] = true; int SIZ = v[now].size(); for(int i = 0; i < SIZ; i++) { int next = v[now][i].to; if(vis[next] || !v[now][i].val) continue; GetMin(next); } } int main() { scanf("%d %d", &n, &m); s = 0; t = 2 * n * m + 1;//源点和汇点初始化 char ch; for(int i = 1; i ch; if(ch == '1') arr[i][j] = 1; else arr[i][j] = 2; } } for(int i = 1; i


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有