Householder transformation 您所在的位置:网站首页 慕凡这个名字的寓意 Householder transformation

Householder transformation

2023-11-11 03:19| 来源: 网络整理| 查看: 265

Short description: Concept in linear algebra

In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder.[1]

Its analogue over general inner product spaces is the Householder operator.

Contents 1 Definition 1.1 Transformation 1.2 Householder matrix 1.2.1 Properties 2 Applications 2.1 Geometric optics 2.2 Numerical linear algebra 2.2.1 QR decomposition 2.2.2 Tridiagonalization 2.2.3 Examples 3 Computational and theoretical relationship to other unitary transformations 4 See also 5 Notes 6 References Definition Transformation

The reflection hyperplane can be defined by its normal vector, a unit vector [math]\displaystyle{ v }[/math] (a vector with length [math]\displaystyle{ 1 }[/math]) that is orthogonal to the hyperplane. The reflection of a point [math]\displaystyle{ x }[/math] about this hyperplane is the linear transformation:

[math]\displaystyle{ x - 2\langle x, v\rangle v = x - 2v\left(v^* x\right), }[/math]

where [math]\displaystyle{ v }[/math] is given as a column unit vector with conjugate transpose [math]\displaystyle{ v^\textsf{*} }[/math].

Householder matrix

The matrix constructed from this transformation can be expressed in terms of an outer product as:

[math]\displaystyle{ P = I - 2vv^* }[/math]

is known as the Householder matrix, where [math]\displaystyle{ I }[/math] is the identity matrix.

Properties

The Householder matrix has the following properties:

it is Hermitian: [math]\displaystyle{ P = P^* }[/math], it is unitary: [math]\displaystyle{ P^{-1} = P^* }[/math], hence it is involutory: [math]\displaystyle{ P = P^{-1} }[/math]. A Householder matrix has eigenvalues [math]\displaystyle{ \pm 1 }[/math]. To see this, notice that if [math]\displaystyle{ u }[/math] is orthogonal to the vector [math]\displaystyle{ v }[/math] which was used to create the reflector, then [math]\displaystyle{ Pu = u }[/math], i.e., [math]\displaystyle{ 1 }[/math] is an eigenvalue of multiplicity [math]\displaystyle{ n - 1 }[/math], since there are [math]\displaystyle{ n - 1 }[/math] independent vectors orthogonal to [math]\displaystyle{ v }[/math]. Also, notice [math]\displaystyle{ Pv = -v }[/math], and so [math]\displaystyle{ -1 }[/math] is an eigenvalue with multiplicity [math]\displaystyle{ 1 }[/math]. The determinant of a Householder reflector is [math]\displaystyle{ -1 }[/math], since the determinant of a matrix is the product of its eigenvalues, in this case one of which is [math]\displaystyle{ -1 }[/math] with the remainder being [math]\displaystyle{ 1 }[/math] (as in the previous point). Applications Geometric optics

In geometric optics, specular reflection can be expressed in terms of the Householder matrix (see Specular reflection § Vector formulation).

Numerical linear algebra

Householder transformations are widely used in numerical linear algebra, for example, to annihilate the entries below the main diagonal of a matrix,[2] to perform QR decompositions and in the first step of the QR algorithm. They are also widely used for transforming to a Hessenberg form. For symmetric or Hermitian matrices, the symmetry can be preserved, resulting in tridiagonalization.[3]

QR decomposition

Householder reflections can be used to calculate QR decompositions by reflecting first one column of a matrix onto a multiple of a standard basis vector, calculating the transformation matrix, multiplying it with the original matrix and then recursing down the [math]\displaystyle{ (i, i) }[/math] minors of that product.

Tridiagonalization Main page: Tridiagonal matrix

This procedure is presented in Numerical Analysis by Burden and Faires. It uses a slightly altered [math]\displaystyle{ \operatorname{sgn} }[/math] function with [math]\displaystyle{ \operatorname{sgn}(0) = 1 }[/math].[4] In the first step, to form the Householder matrix in each step we need to determine [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ r }[/math], which are:

[math]\displaystyle{ \begin{align} \alpha &= -\operatorname{sgn}\left(a_{21}\right)\sqrt{\sum_{j=2}^n a_{j1}^2}; \\ r &= \sqrt{\frac{1}{2}\left(\alpha^2 - a_{21}\alpha\right)}; \end{align} }[/math]

From [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ r }[/math], construct vector [math]\displaystyle{ v }[/math]:

[math]\displaystyle{ v^{(1)} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, }[/math]

where [math]\displaystyle{ v_1 = 0 }[/math], [math]\displaystyle{ v_2 = \frac{a_{21} - \alpha}{2r} }[/math], and

[math]\displaystyle{ v_k = \frac{a_{k1}}{2r} }[/math] for each [math]\displaystyle{ k = 3, 4 \ldots n }[/math]

Then compute:

[math]\displaystyle{ \begin{align} P^1 &= I - 2v^{(1)} \left(v^{(1)}\right)^\textsf{T} \\ A^{(2)} &= P^1 AP^1 \end{align} }[/math]

Having found [math]\displaystyle{ P^1 }[/math] and computed [math]\displaystyle{ A^{(2)} }[/math] the process is repeated for [math]\displaystyle{ k = 2, 3, \ldots, n - 2 }[/math] as follows:

[math]\displaystyle{ \begin{align} \alpha &= -\operatorname{sgn}\left(a^k_{k+1,k}\right)\sqrt{\sum_{j=k+1}^n \left(a^k_{jk}\right)^2} \\[2pt] r &= \sqrt{\frac{1}{2}\left(\alpha^2 - a^k_{k+1,k}\alpha\right)} \\[2pt] v^k_1 &= v^k_2 = \cdots = v^k_k = 0 \\[2pt] v^k_{k+1} &= \frac{a^k_{k+1,k} - \alpha}{2r} \\ v^k_j &= \frac{a^k_{jk}}{2r} \text{ for } j = k + 2,\ k + 3,\ \ldots,\ n \\ P^k &= I - 2v^{(k)} \left(v^{(k)}\right)^\textsf{T} \\ A^{(k+1)} &= P^k A^{(k)}P^k \end{align} }[/math]

Continuing in this manner, the tridiagonal and symmetric matrix is formed.

Examples

In this example, also from Burden and Faires,[4] the given matrix is transformed to the similar tridiagonal matrix A3 by using the Householder method.

[math]\displaystyle{ \mathbf{A} = \begin{bmatrix} 4 & 1 & -2 & 2 \\ 1 & 2 & 0 & 1 \\ -2 & 0 & 3 & -2 \\ 2 & 1 & -2 & -1 \end{bmatrix}, }[/math]

Following those steps in the Householder method, we have:

The first Householder matrix:

[math]\displaystyle{ \begin{align} Q_1 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ 0 & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ 0 & -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}, \\ A_2 = Q_1 A Q_1 &= \begin{bmatrix} 4 & -3 & 0 & 0 \\ -3 & \frac{10}{3} & 1 & \frac{4}{3} \\ 0 & 1 & \frac{5}{3} & -\frac{4}{3} \\ 0 & \frac{4}{3} & -\frac{4}{3} & -1 \end{bmatrix}, \end{align} }[/math]

Used [math]\displaystyle{ A_2 }[/math] to form

[math]\displaystyle{ \begin{align} Q_2 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{3}{5} & -\frac{4}{5} \\ 0 & 0 & -\frac{4}{5} & \frac{3}{5} \end{bmatrix}, \\ A_3 = Q_2 A_2 Q_2 &= \begin{bmatrix} 4 & -3 & 0 & 0 \\ -3 & \frac{10}{3} & -\frac{5}{3} & 0 \\ 0 & -\frac{5}{3} & -\frac{33}{25} & \frac{68}{75} \\ 0 & 0 & \frac{68}{75} & \frac{149}{75} \end{bmatrix}, \end{align} }[/math]

As we can see, the final result is a tridiagonal symmetric matrix which is similar to the original one. The process is finished after two steps.

Computational and theoretical relationship to other unitary transformations

The Householder transformation is a reflection about a hyperplane with unit normal vector [math]\displaystyle{ v }[/math], as stated earlier. An [math]\displaystyle{ N }[/math]-by-[math]\displaystyle{ N }[/math] unitary transformation [math]\displaystyle{ U }[/math] satisfies [math]\displaystyle{ UU^* = I }[/math]. Taking the determinant ([math]\displaystyle{ N }[/math]-th power of the geometric mean) and trace (proportional to arithmetic mean) of a unitary matrix reveals that its eigenvalues [math]\displaystyle{ \lambda_i }[/math] have unit modulus. This can be seen directly and swiftly:

[math]\displaystyle{ \begin{align} \frac{\operatorname{Trace}\left(UU^*\right)}{N} &= \frac{\sum_{j=1}^N\left|\lambda_j\right|^2}{N} = 1, & \operatorname{det}\left(UU^*\right) &= \prod_{j=1}^N \left|\lambda_j\right|^2 = 1. \end{align} }[/math]

Since arithmetic and geometric means are equal if the variables are constant (see inequality of arithmetic and geometric means), we establish the claim of unit modulus.

For the case of real valued unitary matrices we obtain orthogonal matrices, [math]\displaystyle{ UU^\textsf{T} = I }[/math]. It follows rather readily (see orthogonal matrix) that any orthogonal matrix can be decomposed into a product of 2 by 2 rotations, called Givens Rotations, and Householder reflections. This is appealing intuitively since multiplication of a vector by an orthogonal matrix preserves the length of that vector, and rotations and reflections exhaust the set of (real valued) geometric operations that render invariant a vector's length.

The Householder transformation was shown to have a one-to-one relationship with the canonical coset decomposition of unitary matrices defined in group theory, which can be used to parametrize unitary operators in a very efficient manner.[5]

Finally we note that a single Householder transform, unlike a solitary Givens transform, can act on all columns of a matrix, and as such exhibits the lowest computational cost for QR decomposition and tridiagonalization. The penalty for this "computational optimality" is, of course, that Householder operations cannot be as deeply or efficiently parallelized. As such Householder is preferred for dense matrices on sequential machines, whilst Givens is preferred on sparse matrices, and/or parallel machines.

See also Givens rotation Jacobi rotation Notes ↑ "Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM 5 (4): 339–342. 1958. doi:10.1145/320941.320947. https://hal.archives-ouvertes.fr/hal-01316095/file/p339householderb.pdf.  ↑ Taboga, Marco. "Householder matrix, Lectures on matrix algebra.". https://www.statlect.com/matrix-algebra/Householder-matrix.  ↑ Schabauer, Hannes; Pacher, Christoph; Sunderland, Andrew G.; Gansterer, Wilfried N. (2010-05-01). "Toward a parallel solver for generalized complex symmetric eigenvalue problems" (in en). Procedia Computer Science 1 (1): 437–445. doi:10.1016/j.procs.2010.04.047.  ↑ 4.0 4.1 Burden, Richard; Faires, Douglas; Burden, Annette (2016). Numerical analysis (10th ed.). Thomson Brooks/Cole. ISBN 9781305253667.  ↑ Renan Cabrera; Traci Strohecker; Herschel Rabitz (2010). "The canonical coset decomposition of unitary matrices through Householder transformations". Journal of Mathematical Physics 51 (8): 082101. doi:10.1063/1.3466798. Bibcode: 2010JMP....51h2101C.  References LaBudde, C.D. (1963). "The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations". Mathematics of Computation (American Mathematical Society) 17 (84): 433–437. doi:10.2307/2004005.  Morrison, D.D. (1960). "Remarks on the Unitary Triangularization of a Nonsymmetric Matrix". Journal of the ACM 7 (2): 185–186. doi:10.1145/321021.321030.  The Best of the 20th Century: Editors Name Top 10 Algorithms. 33. 2000. p. 1. https://archive.siam.org/news/news.php?id=637.  (Herein Householder Transformation is cited as a top 10 algorithm of this century) Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 11.3.2. Householder Method". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8. http://apps.nrbook.com/empanel/index.html#pg=578.  vteMatrix classesExplicitly constrained entries (0,1) Alternant Anti-diagonal Anti-Hermitian Anti-symmetric Arrowhead Band Bidiagonal Binary Bisymmetric Block-diagonal Block Block tridiagonal Boolean Cauchy Centrosymmetric Conference Complex Hadamard Copositive Diagonally dominant Diagonal Discrete Fourier Transform Elementary Equivalent Frobenius Generalized permutation Hadamard Hankel Hermitian Hessenberg Hollow Integer Logical Markov Metzler Monomial Moore Nonnegative Partitioned Parisi Pentadiagonal Permutation Persymmetric Polynomial Positive Quaternionic Sign Signature Skew-Hermitian Skew-symmetric Skyline Sparse Sylvester Symmetric Toeplitz Triangular Tridiagonal Unitary Vandermonde Walsh Z Constant Exchange Hilbert Identity Lehmer Of ones Pascal Pauli Redheffer Shift Zero Conditions on eigenvalues or eigenvectors Companion Convergent Defective Diagonalizable Hurwitz Positive-definite Stability Stieltjes Satisfying conditions on products or inverses Congruent Idempotent or Projection Invertible Involutory Nilpotent Normal Orthogonal Orthonormal Singular Unimodular Unipotent Totally unimodular Weighing With specific applications Adjugate Alternating sign Augmented Bézout Carleman Cartan Circulant Cofactor Commutation Confusion Coxeter Derogatory Distance Duplication Elimination Euclidean distance Fundamental (linear differential equation) Generator Gramian Hessian Householder Jacobian Moment Payoff Pick Random Rotation Seifert Shear Similarity Symplectic Totally positive Transformation Wedderburn X–Y–Z Used in statistics Bernoulli Centering Correlation Covariance Design Dispersion Doubly stochastic Fisher information Hat Precision Stochastic Transition Used in graph theory Adjacency Biadjacency Degree Edmonds Incidence Laplacian Seidel adjacency Skew-adjacency Tutte Used in science and engineering Cabibbo–Kobayashi–Maskawa Density Fundamental (computer vision) Fuzzy associative Gamma Gell-Mann Hamiltonian Irregular Overlap S State transition Substitution Z (chemistry) Related terms Jordan canonical form Linear independence Matrix exponential Matrix representation of conic sections Perfect matrix Pseudoinverse Quaternionic matrix Row echelon form Wronskian List of matrices Category:Matrices

0.00 (0 votes) Original source: https://en.wikipedia.org/wiki/Householder transformation. Read more



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有