IDH不同突变亚型及伴发基因突变对急性髓系白血病患者的预后意义 您所在的位置:网站首页 急性髓系白血病几种基因突变与预后的关系是什么 IDH不同突变亚型及伴发基因突变对急性髓系白血病患者的预后意义

IDH不同突变亚型及伴发基因突变对急性髓系白血病患者的预后意义

2024-07-14 01:27| 来源: 网络整理| 查看: 265

Zhonghua Xue Ye Xue Za Zhi. 2021 Jan; 42(1): 39–44. Chinese. doi: 10.3760/cma.j.issn.0253-2727.2021.01.008PMCID: PMC7957250PMID: 33677867

Language: Chinese | English

IDH不同突变亚型及伴发基因突变对急性髓系白血病患者的预后意义Prognostic significance of different IDH mutations and accompanying gene mutations in patients with acute myeloid leukemia吴 瑞盈, 谢 新生, 魏 妍, 姜 中兴, 陈 丹丹, 孙 慧, 万 鼎铭, 刘 延方, and 孙 玲Guest Editor (s): 王 叶青Author information Article notes Copyright and License information PMC Disclaimer郑州大学第一附属医院血液科 450052, Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, ChinaCorresponding author.通信作者:谢新生(Xie Xinsheng),Email:moc.361@07retsubyticReceived 2020 Aug 31Copyright 2021年版权归中华医学会所有Copyright © 2021 by Chinese Medical AssociationThis work is licensed under a Creative Commons Attribution 3.0 License (CC-BY-NC). The Copyright own by Publisher. Without authorization, shall not reprint, except this publication article, shall not use this publication format design. Unless otherwise stated, all articles published in this journal do not represent the views of the Chinese Medical Association or the editorial board of this journal.Abstract目的

探讨IDH不同突变亚型及伴发不同基因突变在非M3型急性髓系白血病(AML)患者中的预后意义。

方法

采用二代测序技术检测2016年6月至2018年12月就诊于郑州大学第一附属医院的389例AML患者的22种基因突变情况,通过Kaplan-Meier法及Cox回归模型分析影响预后的因素。

结果

389例AML患者中,IDH1及IDH2的突变率分别为6.2%、8.7%,未发现IDH1与IDH2共突变的情况。IDH2突变型患者年龄偏大、骨髓原始细胞比例高、正常核型多见、常合并RUNX1突变及SRSF2突变。单因素方差分析发现,IDH1突变型组较野生型组的中位总生存(OS)及无进展生存(PFS)时间明显缩短(P值均表1IDH1、IDH2突变急性髓系白血病患者的临床特征分析临床特征IDH1IDH2突变型(24例)野生型(365例)P值突变型(34例)野生型(355例)P值Open in a separate window图1IDH1突变型及野生型患者的总生存(A)和无进展生存(B)比较Open in a separate window图2IDH2R140突变型、IDH2R172突变型及IDH2野生型患者的总生存(A)和无进展生存(B)比较

4.IDH突变在正常核型AML患者中的预后意义:88例正常核型的患者中,IDH1突变型组(8例)较IDH1野生型组中位OS及PFS时间明显缩短(6.3个月对26.3个月,P=0.018;4.4个月对15.1个月,P=0.019),CR率明显提高,但差异无统计学意义(100%对76.4%,P=0.178)。IDH2突变型组与IDH2野生型组的CR率(71.4%对78.9%,P=0.649)、中位OS(2个月对15.0个月,P=0.476)及PFS时间(2.0个月对15.0个月,P=0.519)差异均无统计学意义。R140突变患者(6例)与野生型组的CR率(83.3%对78.9%,P=1.000)、中位OS(15.0个月对15.0个月,P=0.861)及PFS时间(14.0个月对15.0个月,P=0.819)差异均无统计学意义。2例R172突变患者均未达CR,OS时间分别为1.5、2.0个月,PFS时间分别为1.5、2.0个月,低于野生型组,因例数少,未行统计学分析。

5.IDH突变在不同年龄AML患者组中的预后意义:以60岁为界将AML患者分为两组,IDH1、IDH2突变对两组的CR率、OS、PFS均无显著影响。但在年龄≥50岁的患者中,IDH1突变型组较IDH1野生型组中位OS及PFS时间均缩短(2.8个月对6.2个月,P=0.004;2.8个月对5.0个月,P=0.004),CR率差异无统计学意义(60.0%对66.5%,P=0.736)。IDH2突变型组与IDH2野生型组的CR率(55.6%对67.3%,P=0.319)、中位OS(4个月对5.3个月,P=0.927)及PFS时间(4个月对5个月,P=0.850)差异均无统计学意义。4例R172突变患者中2例无法评估疗效,其余2例均NR,OS时间分别为1.5、2.0个月,PFS时间分别为1.5、2.0个月,低于野生型组。R140突变患者(22例)与野生型患者的CR率(62.5%对67.3%,P=0.697)、中位OS(6.2个月对5.3个月,P=0.637)及PFS时间(6.2个月对5个月,P=0.719)差异均无统计学意义。

6.伴发基因突变情况及其与预后的关系:58例IDH突变患者中,43例(74.1%)伴发基因突变,其中伴1种基因突变24例,伴2种基因突变11例,伴3种基因突变8例,每例患者的平均基因突变数为2.2。伴发基因突变频率最高的为NPM1(15例),其次为NRAS(11例)、FLT3-ITD(11例)、DNMT3A(10例)、RUNX1(9例)、SRSF2(4例)、CEBPA(4例)、TET2(3例)、ASXL1(3例)、TP53(1例)、KIT(1例)、PNH6(1例)、ZRSR2(1例)、SETBP1(1例)。与伴发基因的相关性分析显示:IDH2突变患者的RUNX1突变频率及SRSF2突变频率高于IDH2野生型患者(P=0.006,P=0.001)。未发现IDH1突变与其他基因突变存在相关性(P值均>0.05)。

进一步分析伴发突变频率较高的基因(NPM1、NRAS、FLT3-ITD、DNMT3A、RUNX1)对IDH突变患者的预后影响发现,15例伴NPM1突变者的CR率明显高于阴性者(81.8%对36.4%,P=0.014),中位OS及PFS时间较阴性者均延长,但差异无统计学意义(P>0.05)。伴DNMT3A突变者的中位OS时间短于阴性者(4.0个月对6.3个月,P=0.041),CR率及中位PFS时间差异无统计学意义(P>0.05)。伴发基因突变数目对预后无显著影响:伴1种基因突变、伴2种基因突变、伴3种基因突变患者的CR率分别为82.4%(14/17)、70.0%(7/10)、75.0%(3/4),差异无统计学意义(P=0.387),中位OS及PFS时间差异均无统计学意义(P>0.05)。

7.预后多因素分析:将单因素分析中P表2急性髓系白血病患者预后多因素分析因素OSPFSHR(95%CI)P值HR(95%CI)P值年龄≥60岁1.40(1.07~1.85)0.0161.42(1.09~1.86)0.011WBC≥100×109/L1.59(1.10~2.30)0.0131.65(1.15~2.36)0.007HGB≥100 g/L0.79(0.55~1.14)0.2090.80(0.56~1.15)0.2312个疗程内CR0.13(0.10~0.18)0.0000.14(0.11~0.19)0.000接受HSCT0.52(0.30~0.90)0.0210.46(0.26~0.80)0.006FLT3-ITD突变1.17(0.84~1.66)0.3521.24(0.89~1.73)0.212RUNX1突变0.94(0.59~1.50)0.8000.86(0.54~1.38)0.540IDH1突变1.30(0.81~2.09)0.2721.26(0.78~2.01)0.345IDH2突变 R140突变/野生型0.92(0.57~1.48)0.7190.85(0.53~1.38)0.517 R172突变/野生型1.62(0.64~4.07)0.3061.56(0.62~3.91)0.346Open in a separate window

注:CR:完全缓解;HSCT:造血干细胞移植;OS:总生存;PFS:无进展生存

讨论

在哺乳动物细胞中,IDH同工酶有三种形式:依赖NADP的胞质IDH1、线粒体的IDH2及依赖NAD的线粒体IDH3[6]。IDH1和IDH2是AML中常见的基因突变,二者突变均可导致对异柠檬酸的亲和力降低,对α酮戊二酸及NADPH的亲和力增强,促使α酮戊二酸转化为2-羟基戊二酸,高水平的2-羟基戊二酸可能存在潜在的致肿瘤作用[7]–[9]。

IDH1/IDH2突变患者年龄偏大、血小板计数高、骨髓原始细胞比例高、正常核型多见、常合并NPM1突变[10]–[14]。本研究结果显示,IDH2突变患者正常核型多见、高龄、骨髓原始细胞比例高、常合并RUNX1突变及SRSF2突变,但未发现与NPM1突变存在明显相关性。最近的研究显示IDH不同突变亚型与NPM1的相关性存在差异,IDH1、IDH2R140突变更易与NPM1突变共存,IDH2R172突变与NPM1突变互斥[15],且很少伴发其他基因突变[13]。本研究IDH与NPM1突变共存的15例患者中,未发现IDH2R172与NPM1共存,提示IDH2R172突变可能具有不同的生物学意义[16]。

研究发现IDH不同突变亚型对AML患者的预后意义不同,Zhou等[2]和Xu等[3]发现在AML患者中,IDH1突变与较差的预后相关,而IDH2突变可改善预后。另有部分研究者认为IDH1、IDH2突变对AML患者的预后无明显影响[10]–[11],[17]。也有一些证据表明在分子低风险组(NPM1+/FLT3-ITD−)的正常核型患者中,IDH1突变预示着较差的生存期[12],[18]。本研究发现在AML患者中,特别是在正常核型或年龄≥50岁的患者中,IDH1突变与不良预后相关,IDH2突变对预后的影响取决于突变的位置,IDH2R140突变对预后无明显影响,IDH2R172突变与不良预后相关,不仅CR率明显减低、中位OS及PFS时间也明显缩短。亦有文献报道IDH2不同突变位点的预后价值存在差异,Green等[13]发现IDH2R140突变是影响复发和OS率的独立有利预后因素,IDH2R172突变与不良预后相关。Xu等[3]的荟萃分析发现IDH2R140突变可改善年轻患者的OS,IDH2R172的预后价值具有明显的异质性。此外,也有一些研究报道了IDH2R172突变患者预后良好[19]。考虑到本研究中IDH2R172突变仅有5例,其预后价值需要进一步扩大样本量加以明确。

IDH突变常与NPM1、FLT3-ITD、DNMT3A等基因突变共存[15],[20]。本研究中最常见的伴发基因突变依次为NPM1、NRAS、FLT3-ITD、DNMT3A、RUNX1,分析发现伴发基因突变数目对患者的预后无显著影响,不同伴发基因突变对预后的影响不尽相同。伴NPM1突变者的CR率明显高于阴性者(P=0.014),中位OS及PFS时间均有延长趋势,但差异无统计学意义,这与DiNardo等[20]的研究结果类似,提示NPM1突变可能在一定程度上削弱IDH突变对预后的不良影响。本研究还发现伴DNMT3A突变者的中位OS时间较阴性者缩短,但CR率与PFS差异无统计学意义。有文献报道DNMT3A突变的存在可对IDH突变AML患者的表观遗传学产生影响[21],Papaemmanuil等[19]发现与DNMT3A单突变组及IDH2R140单突变组相比,二者共突变组的预后较差。目前有关IDH与其他基因共突变的发生机制及临床意义尚不清楚,未来需要进一步研究。

综上所述,本研究发现IDH基因突变常伴其他基因突变,不同突变亚型及伴发基因突变对AML患者的预后意义不同。但由于本研究病例数较少,且是单中心、回顾性研究,未来需要更多的大样本、多中心、前瞻性研究进一步明确。

References1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes[J] Blood. 2009;114(5):937–951. doi: 10.1182/blood-2009-03-209262. [PubMed] [CrossRef] [Google Scholar]2. Zhou KG, Jiang LJ, Shang Z, et al. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia: a meta-analysis[J] Leuk Lymphoma. 2012;53(12):2423–2429. doi: 10.3109/10428194.2012.695359. [PubMed] [CrossRef] [Google Scholar]3. Xu Q, Li Y, Lv N, et al. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis[J] Clin Cancer Res. 2017;23(15):4511–4522. doi: 10.1158/1078-0432.CCR-16-2628. [PubMed] [CrossRef] [Google Scholar]4. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J] Blood. 2016;127(20):2391–2405. doi: 10.1182/blood-2016-03-643544. [PubMed] [CrossRef] [Google Scholar]5. 中华医学会血液学分会白血病淋巴瘤学组 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2017年版)[J] 中华血液学杂志 2017;38(3):177–182. doi: 10.3760/cma.j.issn.0253-2727.2017.03.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]6. Plaut GW, Cook M, Aogaichi T. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat[J] Biochim Biophys Acta. 1983;760(2):300–308. doi: 10.1016/0304-4165(83)90177-0. [PubMed] [CrossRef] [Google Scholar]7. Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations[J] J Exp Med. 2010;207(2):339–344. doi: 10.1084/jem.20092506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate[J] Cancer Cell. 2010;17(3):225–234. doi: 10.1016/j.ccr.2010.01.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]9. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J] Nature. 2009;462(7274):739–744. doi: 10.1038/nature08617. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J] J Clin Oncol. 2010;28(22):3636–3643. doi: 10.1200/JCO.2010.28.3762. [PubMed] [CrossRef] [Google Scholar]11. Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value[J] Blood. 2010;116(12):2122–2126. doi: 10.1182/blood-2009-11-250878. [PubMed] [CrossRef] [Google Scholar]12. Green CL, Evans CM, Hills RK, et al. The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status[J] Blood. 2010;116(15):2779–2782. doi: 10.1182/blood-2010-02-270926. [PubMed] [CrossRef] [Google Scholar]13. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation[J] Blood. 2011;118(2):409–412. doi: 10.1182/blood-2010-12-322479. [PubMed] [CrossRef] [Google Scholar]14. Koszarska M, Bors A, Feczko A, et al. Type and location of isocitrate dehydrogenase mutations influence clinical characteristics and disease outcome of acute myeloid leukemia[J] Leuk Lymphoma. 2013;54(5):1028–1035. doi: 10.3109/10428194.2012.736981. [PubMed] [CrossRef] [Google Scholar]15. Fernandez-Mercado M, Yip BH, Pellagatti A, et al. Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics[J] PLoS One. 2012;7(8):e42334. doi: 10.1371/journal.pone.0042334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Chen C, Liu Y, Lu C, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition[J] Genes Dev. 2013;27(18):1974–1985. doi: 10.1101/gad.226613.113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Chotirat S, Thongnoppakhun W, Promsuwicha O, et al. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients[J] J Hematol Oncol. 2012;5:5. doi: 10.1186/1756-8722-5-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]18. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study[J] J Clin Oncol. 2010;28(14):2348–2355. doi: 10.1200/JCO.2009.27.3730. [PMC free article] [PubMed] [CrossRef] [Google Scholar]19. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia[J] N Engl J Med. 2016;374(23):2209–2221. doi: 10.1056/NEJMoa1516192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. DiNardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML[J] Am J Hematol. 2015;90(8):732–736. doi: 10.1002/ajh.24072. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Glass JL, Hassane D, Wouters BJ, et al. Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers[J] Cancer Discov. 2017;7(8):868–883. doi: 10.1158/2159-8290.CD-16-1032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有