二进制的发展 您所在的位置:网站首页 布莱尼兹的思想受到了白晋 二进制的发展

二进制的发展

2024-06-14 14:51| 来源: 网络整理| 查看: 265

建议直接看wiki中的二进制阐述.

阐述

​ 二进制(binary)在数学中和数字电路中指以2为基数的记数系统,以2为基数代表该系统是二进位制的.在这一系统中,通常使用0和1代表.在数字电路中,逻辑门直接采用了二进制.因此现代的计算机和依赖计算机的设备都用到了二进制,每个数字称为一个bit(二进制位),bit是binary digit的缩写,这个术语第一次被正式使用,是在香农著名的论文《通信的数学理论》(A Mathematical Theory of Communication)第1页中。 ​ bit是二进制中的一位,是信息的最小单位,bit是Binary digit(二进制数位)的混成词 ​ 1605年,弗朗西斯·培根提出了一套系统,可以把26个字母化为二进制数。此外他补充道,这个思路可以用于任何事物:“只要这些事物的差异是简单对立的,比如铃铛和喇叭,灯光和手电筒,以及火枪和类似武器的射击声”。这对二进制编码的一般理论有重要意义。(参见培根密码)

二进制的发展

​ 现代的二进制记数系统由戈特弗里德·莱布尼茨于1679年设计,在他1703年发表的文章《论只使用符号0和1的二进制算术,兼论其用途及它赋予伏羲所使用的古老图形的意义》[1]出现。与二进制数相关的系统在一些更早的文化中也有出现,包括古埃及、古代中国和古印度。中国的《易经》尤其引起了莱布尼茨的联想。 ​ 莱布尼茨关于二进制的论文全名是《论只使用符号0和1的二进制算术,兼论其用途及它赋予伏羲所使用的古老图形的意义》(1703年)。类似于现代二进制计数系统,莱布尼兹的系统使用0和1。下面是莱布尼兹的二进制记数系统的一个例子:

0 0 0 1 数值为{\displaystyle 2^{0}} 0 0 1 0 数值为{\displaystyle 2^{1}} 0 1 0 0 数值为{\displaystyle 2^{2}} 1 0 0 0 数值为{\displaystyle 2^{3}} 莱布尼兹认为易经中的卦象与二进制算术密不可分。莱布尼兹解读了易经中的卦象,并认为这是其作为二进制算术的证据。作为[亲华派](https://zh.wikipedia.org/wiki/親華派),莱布尼兹关注易经,并饶有兴致地注意到它的卦象与从0到111111的二进制数字有某种对应,并认为这种对应反映了中国的重大成就中展现的他所崇尚的数学哲学。莱布尼兹首次接触到易经是在与法国耶稣会传教士白晋的联系中。白晋1685年作为传教士前往中国。 长期以来,人们对莱布尼茨发明二进制是否受到了伏羲八卦的影响争议颇多。认为莱布尼茨未受伏羲八卦影响独立发明二进制的理由主要是莱布尼茨在1679年(与白晋首次通信的二十多年)就撰写了“二的级数”(De Progressione Dyadica)一文;而当前有学者倾向于认为莱布尼茨二进制的体系确源于伏羲八卦图,原因在于1687年莱布尼茨看过柏应理[3]的《这个哲学家孔子》,书中便有伏羲八卦次序图、方位图和周文王六十四卦图。此外,莱布尼茨还阅读过1660年斯比赛尔出版的《中国文史评析》,其中亦有对《易经》和八卦的介绍。[[4]](https://zh.wikipedia.org/wiki/二进制#cite_note-4) 此外,莱布尼兹认为易经的卦象肯定了他所信仰的基督教的共相。[5]一切数都可以用0和1创造出来,在莱布尼兹看来,这正象征了基督教《圣经》所说的上帝从“无”创造“有”(creatio ex nihilo)。

(有一个概念)不容易传授给异教徒:全能的上帝从无创造有。现在我们可以说,数字的起源是世上能最好展示和说明这种力量的事物,它以“一”和“零”或者说“无”的形式呈现,既朴素又简练。

——莱布尼茨写给鲁道夫·奥古斯都公爵的信[5] ​ 还有一件事情,虽然没有直接直接证据,但是,也有点联系,就是摩尔斯电码的发明,电报的发明者是萨缪尔·芬利·布里斯·摩尔斯.摩尔斯同时也发明了摩尔斯电码,摩尔斯电码中的点和划,好像也是二进制的应用.

布尔代数

​ 1954年,英国数学家乔治·布尔发表了一篇里程碑式的论文,其中详细介绍了一种代数化的逻辑系统,后人称之为布尔代数。他提出的逻辑演算在后来的电子电路设计中起基础性作用. ​ 在此,我们对于布尔代数要学习一下. ​ 逻辑代数是代数的一个分支,其变量的值仅由真 和 假来组成,其实就是1 和 0,逻辑代数的主要运算是与或非,因此,它是以普通代数描述数字关系相同的方式来描述逻辑关系的形式主义。逻辑代数是乔治·布尔(George Boole)在他的第一本书《逻辑的数学分析》(1847年)中引入的,并在他的《思想规律的研究》(1854年)中更充分的提出了逻辑代数。[[1]](https://zh.wikipedia.org/wiki/逻辑代数#cite_note-1) 根据Huntington“布尔代数”这个术语,最初是由Sheffer于1913年提出。[2] ​ 参与逻辑运算的变量叫逻辑变量,用字母A,B……表示。每个变量的取值非0 即1。 0、1不表示数的大小,而是代表两种不同的逻辑状态。 正、负逻辑规定:

正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。 负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。 逻辑函数:如果有若干个逻辑变量(如A、B、C、D)按与、或、非三种基本运算组合在一起,得到一个表达式L。对逻辑变量的任意一组取值(如0000、0001、0010)L有唯一的值与之对应,则称L为逻辑函数。逻辑变量A、B、C、D的逻辑函数记为:L=f(A、B、C、D) 基本运算

逻辑代数的基本运算如下。

与(合取),记作 x∧y(有时记作 x AND y 或 Kxy),在 x = y = 1 情况下,满足 x∧y = 1;其他情况下 x∧y = 0。 或(析取), 记作 x∨y(有时记作 x OR y 或 Axy),在 x = y = 0 情况下,满足 x∨y = 0;其他情况下 x∨y = 1。 非 (否定), 记作 ¬x(有时记作 NOT x, Nx 或 !x),在 x = 1 情况下,满足 ¬x = 0;而在 ¬x = 1 情况下,x = 0。 如果把真值0和1解释为整数,这些运算可以表示为普通算数运算: 此外可以用制作真值表来表示 x∧y, x∨y 和 ¬x 的值: 有人可能会认为,只有否定和另外两种运算之一是基本的,因为用下列性质可以用逻辑否和逻辑或来定义逻辑与,反之亦然: 香农进入

​ 20世纪早期,一些电子工程师领悟到逻辑代数很像某种电子电路的行为。香农在它1937年的论文中证明了这种行为与逻辑代数等价。 几乎所有现代通用计算机都用二值布尔逻辑做运算;也就是说它们的电路是二值布尔逻辑的物理表示。几种表示方式:导线上电压的高低,磁性存储设备中磁畴的方向,打孔卡或纸带上的洞,等等(但有些早期的计算机用了十进制电路或者机械,而不是二值逻辑电路) 当然,也可能在任意介质中编码进2个以上的符号。比如在导线上用0,1,2,3伏特去编码一种有4个符号的字符集,或者利用打孔卡的洞的不同大小。但实践上,在一个很小的、高速的、低功耗的电路中噪声是个关键因素。它使分辨多个可能出现的符号变得困难。所以电路设计者们选择了高、低2种电压而不是4种。 由于上面的原因计算机使用二值逻辑电路。最常见的计算机架构使用32或64个叫做比特的布尔值序列,比如01101000110101100101010101001011。当使用机器语言、汇编语言和某些高级语言时,程序员可以操作寄存器的数字结构。在寄存器中0电压表示逻辑0,参考电压(通常是+5伏或+3.3伏[[4]](https://zh.wikipedia.org/wiki/逻辑代数#cite_note-4))表示逻辑1。这些语言同时支持数值操作和逻辑操作。这里的“数值操作”指计算机把比特序列当作二进制数字进行加减乘除等运算。“逻辑操作”指2个比特序列之间的与或非运算,序列中每一位都与另一序列中对应位进行运算。这两种操作之间的关键不同是前者有进位而后者没有。 ​ 1937年,克劳德·香农在麻省理工大学完成了其电气工程硕士学位论文,用继电器和开关实现了布尔代数和二进制算术运算。论文题为《继电器与开关电路的符号分析》(A Symbolic Analysis of Relay and Switching Circuits)[7],其中香农的理论奠定了数字电路的理论基础。香农凭这篇论文于1940年被授予美国阿尔弗雷德·诺贝尔协会美国工程师奖。哈佛大学的哈沃德·加德纳称,香农的硕士论文“可能是本世纪最重要、最著名的硕士学位论文”。

继电器的发明

​ 有没有读者看过,《编码的奥秘》?该书的第六章就有介绍过,继电器是啥玩意儿,不过那个准确的叫法是电磁继电器.在编码的奥秘中,好像很容易继电器是个啥玩意儿,就是一个连通一个线圈和另外一个线圈,继续工作的电器嘛.但是维基中的解释不是这样的,笔者也很好奇,继电器这个名字是咋翻译过来的呢.wiki中的解释如下:

继电器(Relay),也称电驿,是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 在富士通的解释如下: 继电器(relay)是一种电控制器件,是当输入量的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统和被控制系统之间的互动关系。通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种"自动开关"。故在电路中起着自动调节、安全保护、转换电路等作用。 在百度词条中的解释如下: 在18世纪的时候,科学家们还认为电和磁是风马牛不相及的两种物理现象。1820年丹麦物理学家奥斯特发现电流的磁效应后,1831年英国物理学家法拉第又发现了电磁感应现象。这些发现证实了电能和磁能可以相互转化,这也为后来的电动机和发电机的诞生奠定了基础;人类则因这些发明创造从此迈入电气时代。19世纪30年代,美国物理学家约瑟夫·亨利在研究电路控制时利用电磁感应现象发明了继电器。最早的继电器是电磁继电器,它利用电磁铁在通电和断电下磁力产生和消失的现象,来控制高电压高电流的另一电路的开合,它的出现使得电路的远程控制和保护等工作得以顺利进行。继电器是人类科技史上的一项伟大发明创造,它不仅是电气工程的基础,也是电子技术、微电子技术的重要基础。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有