复变函数导数求解(包含矢量、矩阵形式) 您所在的位置:网站首页 实变复值函数与复变函数 复变函数导数求解(包含矢量、矩阵形式)

复变函数导数求解(包含矢量、矩阵形式)

2024-05-30 01:29| 来源: 网络整理| 查看: 265

文章目录

目录

文章目录

前言

一、复变函数导数

1.1 导数定义

1.2 求导法则

1.3 存在条件

二、常用求导结论

2.1 标量函数对标量的导数

2.2 标量函数对矢量的导数

2.3 标量函数对矩阵的导数

总结

前言

       本文将从信号处理的角度简单阐明复变函数理论的重要性,并重点介绍能够用于信号处理领域的复变函数求导原理。

       能够发射到空间中的信号只能是实信号。然而我们在处理接收信号时,往往是复信号形式的,这两者并不冲突。实信号频谱是左右对称的,也就是实信号有至少一半频谱携带的信息是冗余的,为了提高频谱利用率,IQ调制与解调技术被用于信号的发射与接收,接收的信号分为IQ两路信号。为了更好更高效的描述IQ信号,人们提出利用复变函数来描述IQ两路信号(复信号实际是不存在的,它只是描述IQ两路信号的最佳手段)。因此,基于实变函数的理论在复数中不再适用,包括估计理论中克拉美罗界的推导、匹配滤波理论的推导等需要从复变函数的角度重新开展,而其中一个重要的基础理论就是复变函数的求导理论。

一、复变函数导数 1.1 导数定义

       设w=f\left ( z \right )在点z_{0}的某邻域N_{p}\left ( z_{0} \right )内有定义,且\Delta z=z-z_{0},其中z\in N_{p}\left ( z_{0} \right )。若下面极限存在

\lim_{\Delta z\rightarrow 0}\frac{f\left ( z \right )-f\left ( z_{0} \right )}{z-z_{0}}=\lim_{\Delta z\rightarrow 0}\frac{\Delta w}{\Delta z}

则称f\left ( z \right )在点z_{0}可导,其极限值称为f\left ( z \right )在点z_{0}的导数,记为{f}'\left ( z_{0} \right )\frac{dw}{dz}|_{z_{0}}

1.2 求导法则

复变函数f\left ( z \right )g\left ( z \right )在复变量z区域D内处处可导,则下列运算规则得到的复变函数的导数为

1)和差法则

{\left [f\left ( z \right )\pm g\left ( z \right ) \right ]}'={f}'\left ( z \right )\pm {g}'\left ( z \right )

2) 积法则

{\left [f\left ( z \right ) g\left ( z \right ) \right ]}'={f}'\left ( z \right )g\left ( z \right )+f\left ( z \right ) {g}'\left ( z \right )

3) 商法则

{\left [\frac{f\left ( z \right )}{g\left ( z \right )} \right ]}'=\frac{​{f}'\left ( z \right )g\left ( z \right )-f\left ( z \right ) {g}'\left ( z \right )}{\left [ g^{2}\left ( z \right ) \right ]}

4) 链式法则

若函数w=f\left ( \xi \right )\xi =\varphi \left ( z \right )分别在区域G和D内可导,且\xi =\varphi \left ( z \right )将D映射为D^{*}使得D^{*}\subset G,则复合函数w=f\left [ \varphi \left ( z \right ) \right ]在D内可导,且

\frac{dw}{dz}=f^{'}\left ( \xi \right )\varphi ^{'}\left ( z \right )\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left ( \xi =\varphi \left ( z \right )\right )

5) 反函数法则

若函数w=f\left (z \right )在区域D内可导且将D一一映射到区域E。若在区域D内{f}'\left ( z \right )\neq 0且反函数z=\varphi \left ( w \right )在E连续,则\varphi \left ( w \right )在E内可导,且

\varphi ^{'}\left ( w \right )=\frac{1}{f ^{'}\left ( z \right )}\, \, \, \, \, \, \, \, \, \, \, \, \, \left ( z=\varphi \left ( w \right ) \right )

1.3 存在条件

复变函数f\left ( z \right )=u\left ( x,y \right )+i v\left ( x,y \right )在点z_{0}=x_{0}+i y_{0}可导的充要条件是函数u\left ( x,y \right )v\left ( x,y \right )在点\left ( x_{0},y_{0} \right )可微(四个一阶偏导数在该点存在且连续),其满足方程(Cauchy-Riemann方程)

u_{x}^{'}=v_{y}^{'},u_{y}^{'}=-v_{x}^{'}

f\left ( z \right )在点z=z_{0}可导时,在该点有

f^{'}\left ( z \right )=u_{x}^{'}\left ( x,y \right )+i v_{x}^{'}\left ( x,y \right )

证明

假设w=f\left ( z \right )z=z_{0}可导,则有

\Delta w=A\Delta z+\rho \left ( \Delta z \right )

进一步有

\Delta u+i \Delta v=\left ( a+ib \right )\left (\Delta x+i \Delta y \right )+\rho_{1}+i\rho_{2}

上式等价于

\Delta u=a\Delta x-b\Delta y+\rho_{1}

\Delta v=b\Delta x+a\Delta y+\rho_{2}

上式分别表示u\left ( x,y \right )v\left ( x,y \right )的微分形式,因此w=f\left ( z \right )z=z_{0}可导等价于

u_{x}^{'}=v_{y}^{'}=a,u_{y}^{'}=-v_{x}^{'}=b

扩展1

利用u_{x}^{'}=v_{y}^{'}=a,u_{y}^{'}=-v_{x}^{'}=b,导数可以表示为

\frac{\partial f}{\partial z}=u_{x}^{'}\left ( x,y \right )+i v_{x}^{'}\left ( x,y \right )=\frac{1}{2}\left (\frac{\partial f}{\partial x} -i \frac{\partial f}{\partial y}\right )

扩展2

\Delta z=\Delta x-i\Delta y,则\frac{\partial f}{\partial z^{*}}存在的等效条件为

u_{x}^{'}=-v_{y}^{'}=a,u_{y}^{'}=v_{x}^{'}=b

对应导数为:

\frac{\partial f}{\partial z^{*}}=u_{x}^{'}\left ( x,y \right )+i v_{x}^{'}\left ( x,y \right )=\frac{1}{2}\left (\frac{\partial f}{\partial x} +i \frac{\partial f}{\partial y}\right )

推论

        导数\frac{\partial f}{\partial z}=\frac{\partial f^{*}}{\partial z^{*}}如果存在且不等于0,则导数\frac{\partial f}{\partial z^{*}}=\frac{\partial f^{*}}{\partial z}必然不存在。(该结论是博主根据上述结论得到的新结论,没有细致调研,因此无法判断该结论是否有人证明过,感兴趣的可以去调研,也希望在评论区给出调研结果以及结论的证明过程)

二、常用求导结论 2.1 标量函数对标量的导数

标量f\left ( z \right )是复变量z的复变函数,下面为常见复变函数的导数:

{\left ( \ln z \right )}'=\frac{1}{z}\left ( z\neq 0\, \, \, \, \, \, \, -\pi\arg\left ( z \right )\pi \right )

{\left ( z^{\alpha } \right )}'=\alpha z^{\alpha -1}\left (z\neq 0\, \, \, \, \, \, \, -\pi\arg\left ( z \right )\pi \right )

{\left ( \sin z \right )}'=\cos z

{\left ( \cos z \right )}'=-\sin z

{\left ( \tan z \right )}'=\frac{1}{\cos^{2} z}

{\left ( \sinh z \right )}'=\cosh z\left (\sinh z=\frac{1}{2}\left ( e^{z}-e^{-z} \right ) \, \, \, \, \, \cosh z=\frac{1}{2}\left ( e^{z}+e^{-z} \right ) \right )

{\left ( \cosh z \right )}'=\sinh z

\frac{\partial z}{\partial z}=\frac{\partial z^{*}}{\partial z^{*}}=1

\frac{\partial z^{*}}{\partial z}=\frac{\partial z}{\partial z^{*}}=0\: \: \: \: \: \: \: (\text{Inexistence})

注:该式的导数是不存在的(不满足C-R方程),为了方便分析,一般认为zz^{*}是相互独立的两个变量

z表示实变量,下面为常见实变函数的导数:

{\left ( \ln z \right )}'=\frac{1}{z}\left ( z\neq 0 \right )

{\left ( z^{\alpha } \right )}'=\alpha z^{\alpha -1}\left (z\neq 0 \right )

{\left ( \sin z \right )}'=\cos z

{\left ( \cos z \right )}'=-\sin z

{\left ( \tan z \right )}'=\frac{1}{\cos^{2} z}

{\left ( \sinh z \right )}'=\cosh z\left (\sinh z=\frac{1}{2}\left ( e^{z}-e^{-z} \right ) \, \, \, \, \, \cosh z=\frac{1}{2}\left ( e^{z}+e^{-z} \right ) \right )

{\left ( \cosh z \right )}'=\sinh z

2.2 标量函数对矢量的导数

          \vec{b} =\left [ b_{1},b_{2},\cdots ,b_{M} \right ]^{T}为复矢量,f\left ( \vec{z} \right )为复矢量\vec{z} =\left [ z_{1},z_{2},\cdots ,z_{M} \right ]^{T}的标量函数,\vec{f}\left ( \vec{z} \right )=\left [f_{1}\left ( \vec{z} \right ),f_{2}\left ( \vec{z} \right ),\cdots ,f_{N}\left ( \vec{z} \right ) \right ]^{T}\vec{g}\left ( \vec{z} \right )=\left [g_{1}\left ( \vec{z} \right ),g_{2}\left ( \vec{z} \right ),\cdots ,g_{N}\left ( \vec{z} \right ) \right ]^{T}都为复矢量\vec{z} =\left [ z_{1},z_{2},\cdots ,z_{M} \right ]^{T}的矢量函数,并作出如下导数定义

\frac{\partial f\left ( \vec{z} \right )}{\partial \vec{z}}=\left [\frac{\partial f\left ( \vec{z} \right )}{\partial z_{1}},\frac{\partial f\left ( \vec{z} \right )}{\partial z_{2}},\cdots ,\frac{\partial f\left ( \vec{z} \right )}{\partial z_{M}} \right ]^{T},\frac{\partial f\left ( \vec{z}\right )}{\partial \vec{z}^{*} }=\left [\frac{\partial f\left ( \vec{z} \right )}{\partial z_{1}^{*} },\frac{\partial f\left ( \vec{z} \right )}{\partial z_{2}^{*} },\cdots ,\frac{\partial f\left ( \vec{z} \right )}{\partial z_{M}^{*} } \right ]^{T}

\frac{\partial \vec{f}^{T}\left ( \vec{z} \right )}{\partial \vec{z}}=\left [\frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial \vec{z}},\frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial \vec{z}},\cdots ,\frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial \vec{z}} \right ]=\begin{bmatrix} \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{1}}& \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{1}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{1}}\\ \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{2}}& \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{2}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{2}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{M}} & \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{M}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{M}} \end{bmatrix}

\frac{\partial \vec{f}^{T}\left ( \vec{z} \right )}{\partial \vec{z}^{*}}=\left [\frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial \vec{z}^{*}},\frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial \vec{z}^{*}},\cdots ,\frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial \vec{z}^{*}} \right ]=\begin{bmatrix} \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{1}^{*}}& \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{1}^{*}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{1}^{*}}\\ \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{2}^{*}}& \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{2}^{*}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{2}^{*}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial {f}_{1}\left ( \vec{z} \right )}{\partial {z}_{M}^{*}} & \frac{\partial {f}_{2}\left ( \vec{z} \right )}{\partial {z}_{M}^{*}} & \cdots & \frac{\partial {f}_{N}\left ( \vec{z} \right )}{\partial {z}_{M}^{*}} \end{bmatrix}

\frac{\partial \vec{z}^{T}}{\partial \vec{z}}=\begin{bmatrix} \frac{\partial {z}_{1}}{\partial {z}_{1}}& \frac{\partial {z}_{2}}{\partial {z}_{1}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{1}}\\ \frac{\partial {z}_{1}}{\partial {z}_{2}}& \frac{\partial {z}_{2}}{\partial {z}_{2}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{2}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial {z}_{1}}{\partial {z}_{M}} & \frac{\partial {z}_{2}}{\partial {z}_{M}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{M}} \end{bmatrix}=I=\frac{\partial \vec{z}^{H}}{\partial \vec{z}^{*}}

\frac{\partial \vec{z}^{H}}{\partial \vec{z}}=\begin{bmatrix} \frac{\partial {z}_{1}^{*}}{\partial {z}_{1}}& \frac{\partial {z}_{2}^{*}}{\partial {z}_{1}} & \cdots & \frac{\partial {z}_{M}^{*}}{\partial {z}_{1}}\\ \frac{\partial {z}_{1}^{*}}{\partial {z}_{2}}& \frac{\partial {z}_{2}^{*}}{\partial {z}_{2}} & \cdots & \frac{\partial {z}_{M}^{*}}{\partial {z}_{2}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial {z}_{1}^{*}}{\partial {z}_{M}} & \frac{\partial {z}_{2}^{*}}{\partial {z}_{M}} & \cdots & \frac{\partial {z}_{M}^{*}}{\partial {z}_{M}} \end{bmatrix}=O=\frac{\partial \vec{z}^{T}}{\partial \vec{z}^{*}}\: \: \: \: \: \: \: (\text{Inexistence})

\frac{\partial \vec{b}^{H}\vec{z}}{\partial \vec{z}}=\begin{bmatrix} \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{1}}\\ \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{2}}\\ \vdots \\ \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{M}} \end{bmatrix}=\vec{b}^{*}=\frac{\partial \vec{z}^{T}\vec{b}^{*}}{\partial \vec{z}}=\left (\frac{\partial \vec{z}^{H}\vec{b}}{\partial \vec{z}^{*}} \right )^{*}

\frac{\partial \vec{b}^{H}\vec{z}}{\partial \vec{z}^{*}}=\begin{bmatrix} \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{1}^{*}}\\ \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{2}^{*}}\\ \vdots \\ \frac{\partial \sum_{m=1}^{M} b_{m}^{*}z_{m}}{\partial z_{M}^{*}} \end{bmatrix}=O=\frac{\partial \vec{z}^{T}\vec{b}^{*}}{\partial \vec{z}^{*}}=\left (\frac{\partial \vec{z}^{H}\vec{b}}{\partial \vec{z}} \right )^{*}\: \: \: \: \: \: \: (\text{Inexistence})

\frac{\partial \vec{f}^{H}\left (\vec{z} \right )\vec{g}\left (\vec{z} \right )}{\partial \vec{z}}=\left [\frac{\partial \vec{f}^{H}\left (\vec{z} \right )}{\partial \vec{z}} \right ]\vec{g}\left (\vec{z} \right )+\left [\frac{\partial \vec{g}^{T}\left (\vec{z} \right )}{\partial \vec{z}} \right ]\vec{f}^{*}\left (\vec{z} \right )

\frac{\partial \vec{z}^{H} R \vec{z}}{\partial \vec{z}}=\left [\frac{\partial \vec{z}^{H}}{\partial \vec{z}} \right ]R \vec{z} +\left [\frac{\partial \vec{z}^{T}}{\partial \vec{z}} \right ]R^{T}\vec{z}^{*}=R^{T}\vec{z}^{*}

\frac{\partial \vec{z}^{H} R \vec{z}}{\partial \vec{z}^{*}}=\left [\frac{\partial \vec{z}^{H}}{\partial \vec{z}^{*}} \right ]R \vec{z} +\left [\frac{\partial \vec{z}^{T}}{\partial \vec{z}^{*}} \right ]R^{T}\vec{z}^{*}=R \vec{z}

\frac{\partial \vec{z}^{H} R \vec{z}^{*}}{\partial \vec{z}^{*}}=\left [\frac{\partial \vec{z}^{H}}{\partial \vec{z}^{*}} \right ]R \vec{z}^{*} +\left [\frac{\partial \vec{z}^{H}}{\partial \vec{z}^{*}} \right ]R^{T}\vec{z}^{*}=\left (R+R^{T} \right ) \vec{z}^{*}

      \vec{b} =\left [ b_{1},b_{2},\cdots ,b_{M} \right ]^{T}为实矢量,f\left ( \vec{z} \right )为实矢量\vec{z} =\left [ z_{1},z_{2},\cdots ,z_{M} \right ]^{T}的实函数,\vec{f}\left ( \vec{z} \right )=\left [f_{1}\left ( \vec{z} \right ),f_{2}\left ( \vec{z} \right ),\cdots ,f_{N}\left ( \vec{z} \right ) \right ]^{T}\vec{g}\left ( \vec{z} \right )=\left [g_{1}\left ( \vec{z} \right ),g_{2}\left ( \vec{z} \right ),\cdots ,g_{N}\left ( \vec{z} \right ) \right ]^{T}都为实矢量\vec{z} =\left [ z_{1},z_{2},\cdots ,z_{M} \right ]^{T}的矢量函数,则

\frac{\partial \vec{z}^{T}}{\partial \vec{z}}=\begin{bmatrix} \frac{\partial {z}_{1}}{\partial {z}_{1}}& \frac{\partial {z}_{2}}{\partial {z}_{1}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{1}}\\ \frac{\partial {z}_{1}}{\partial {z}_{2}}& \frac{\partial {z}_{2}}{\partial {z}_{2}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{2}}\\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial {z}_{1}}{\partial {z}_{M}} & \frac{\partial {z}_{2}}{\partial {z}_{M}} & \cdots & \frac{\partial {z}_{M}}{\partial {z}_{M}} \end{bmatrix}=I

\frac{\partial \vec{b}^{T}\vec{z}}{\partial \vec{z}}=\begin{bmatrix} \frac{\partial \sum_{m=1}^{M} b_{m}z_{m}}{\partial z_{1}}\\ \frac{\partial \sum_{m=1}^{M} b_{m}z_{m}}{\partial z_{2}}\\ \vdots \\ \frac{\partial \sum_{m=1}^{M} b_{m}z_{m}}{\partial z_{M}} \end{bmatrix}=\vec{b}

\frac{\partial \vec{f}^{T}\left (\vec{z} \right )\vec{g}\left (\vec{z} \right )}{\partial \vec{z}}=\left [\frac{\partial \vec{f}^{T}\left (\vec{z} \right )}{\partial \vec{z}} \right ]\vec{g}\left (\vec{z} \right )+\left [\frac{\partial \vec{g}^{T}\left (\vec{z} \right )}{\partial \vec{z}} \right ]\vec{f}\left (\vec{z} \right )

\frac{\partial \vec{z}^{T} R \vec{z}}{\partial \vec{z}}=\left [\frac{\partial \vec{z}^{T}}{\partial \vec{z}} \right ]R \vec{z} +\left [\frac{\partial \vec{z}^{T}}{\partial \vec{z}} \right ]R^{T}\vec{z}=\left (R+R^{T} \right ) \vec{z}

2.3 标量函数对矩阵的导数

AB分别是m\times nn\times m的矩阵,则

\frac{\partial Tr\left ( AB \right ) }{\partial A}=B^{T},\frac{\partial Tr\left ( AB \right ) }{\partial B}=A^{T},\frac{\partial Tr\left ( A^{H}B \right ) }{\partial A}=O_{m\times n},\frac{\partial Tr\left ( AB^{H} \right ) }{\partial B}=O_{n\times m}

Tr\left ( \bullet \right )表示方阵对角线上元素之和,称为迹。det\left ( \bullet \right )表示行列式。

祝同江等. 工程数学复变函数(第三版).北京:电子工业出版社,2012.6.

复数矩阵求导辨识 - 知乎 (zhihu.com)

标量函数对矢量的求导 - 百度文库 (baidu.com)

复数矩阵求导的转置和共轭转置问题?(MMSE预编码器推导) - 知乎 (zhihu.com)

总结

本文简单介绍了复变函数的求导,用于信号处理领域的研究。有问题也欢迎评论区留言。转载请附链接【杨(_>



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有