全国1:200 000数字地质图(公开版)空间数据库 您所在的位置:网站首页 如何看水文地质图 全国1:200 000数字地质图(公开版)空间数据库

全国1:200 000数字地质图(公开版)空间数据库

2023-09-29 11:15| 来源: 网络整理| 查看: 265

1 引言

1∶200 000地质图是最广泛使用的地质工作用图,在基础地质调查、矿产资源评价、地下水勘查、工程勘察和地质环境调查评价等方面有重要的使用价值,建设全国1∶200 000数字地质图空间数据库对提高上述工作的水平和效率具有重要意义(刘锋英等,2002;唐海燕,2002;李军,2006;刘英才,2013)。

全国1∶200 000数字地质图(公开版)空间数据库(以下简称“1∶200 000地质图库”)是在“八五”、“九五”期间,在地勘生产费用逐年减少、找矿风险不断加大的形势下,急需合理部署普查前期工作,以确保地质找矿重大突破的背景下,作为利用地理信息系统等先进技术辅助选准找矿远景地区的数据基础之一,并随后作为地勘信息系统建设的重中之重开始酝酿、试点和规模生产的。

全国1∶200 000数字地质图(公开版)空间数据元数据简表如表1所示。

表 1Table 1 表 1 数据库(集)元数据简表 条目 描述 数据库(集)名称 全国1∶200 000数字地质图(公开版)空间数据库 数据库(集)作者 李晨阳,中国地质调查局发展研究中心 王新春,中国地质调查局 何春珍,中国地质调查局发展研究中心 吴 轩,中国地质调查局发展研究中心 孔昭煜,中国地质调查局发展研究中心 李晓蕾,中国地质调查局发展研究中心 数据时间范围 1957—1995 年 地理区域 全国1∶200 000国际分幅数字地质图研究区范围为中华人民共和国陆域部分为主。经度范围为:东经72°~138°,北纬16°~56°,采用1∶200 000地形图的分幅编号 数据格式 .mpj, .shp, .doc 数据量 90 GB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 原地质矿产部地质调查局、中国地质调查局委托项目(S3.2.1.1-27, 19961831004015-225, 199918310102-08, 19991831008015, 199918310120) 语种 中文 数据库(集)组成 数据集由1 163幅1∶200 000地质图数据组成,每个地质图数据(即一个图幅)包含如下文件:一个图幅栅格数据文件、全要素矢量化地质图数据文件、MapGIS各图层数据文件(包括高斯\经纬度两种格式数据)、ArcInfo各图层数据文件、E00数据文件、属性库(*.DBF),主要电子文档:元数据(图幅、分层、图层属性等说明)、说明文件(图饰图例库、修改字段、为制图要求添加注释图层等说明)。 表 1 数据库(集)元数据简表 2 数据采集和处理方法

全国绝大多数省、自治区建库地质资料主要来源于从20世纪50年代中期到90年代初期的30多年所测得的1∶200 000区域地质调查报告和地质图及矿产图、各省的《地层多重划分和对比研究》、部分省的《区域地质志》、1∶50 000区域地质调查成果及相关地质报告、科研专题报告及图件。数据采集与综合处理是1∶200 000数字地质图空间数据库建设的核心环节之一。

2.1 数据采集过程

建库采集数据均是使用的MapGIS 6.7。建库采集数据过程归纳起来基本可分为五个阶段:

2.1.1 准备阶段

(1)资料准备。根据所选图幅,全面收集有关资料(包括图件、报告、分析数据、野外原始记录卡片、记录本等),以满足建库需求。

(2)文档准备。建库工作全面展开之前,首先根据《地质图空间数据库建设工作指南(2.0版)》编写操作性较强的作业指导书,编制各种属性卡片(表)、工作日志、自检表、互检表、组检表等文档。

(3)系统库准备。在MapGIS系统库的基础上,修改或补充各种花纹符号、线型、颜色库和制图参数索引表等。

2.1.2 数据采集阶段

(1)扫描图形,形成栅格文件。在对聚脂薄膜地质底图或地质(地质矿产图)原图进行扫描时,为了减少扫描所产生误差,根据图件的清晰及复杂程度,选择适当的分辨率进行扫描。选择彩色扫描应在150 dpi以上,而黑白扫描应在300 dpi以上。

(2)图形数据采集与编辑。图形采集编辑是对点、线、多边形等图形要素的空间数据进行编辑修改。为了确保所建空间数据库的质量,遵循图形数据线与线之间要建立结点,所有的多边形要闭合,图形数据和属性数据要一一对应,杜绝超出相关比例尺图件编绘标准的图形误差,特别是空间误差的原则。图形采集所用的线型、符号、图例及各种点的参数等均按国标、部标及行标的有关标准执行。因此无论是线或点,都要先分别选择参数后,再分别进行采集。

图形矢量化分层采集前,建立一系列标准的文件夹,设置系统路径。在图形矢量化过程中,首先将所有地质要素分层矢量化。按一定的顺序对图层进行数字化采集,即内图框→方里网(经纬网)→河流→湖泊、水库→断层→脉岩→第四系地层→侵入岩→火山岩→非正式地层→其它地层。其它图层不存在重复利用图形要素的现象,可随意确定矢量化采集顺序。

经过对点、线要素的编辑后,对数字化地质图素图进行校正。校正完毕后输出数字化地质图素图,并进行图面自检、互检和组检。

2.1.3 建立分层文件、采录属性阶段

(1)建立分层文件。根据地质体所在的图层,从综合多边形数据文件中分层提取(多边形、线、点)数据文件。线图层数据文件可利用弧转线建立其相应的文件。点用其所在不同层建立独立的分层文件。

(2)建立属性结构、采录属性。地质专业人员按照各图层属性结构中数据项内容要求,查阅地质报告、说明书及其他相关资料,对地质图中各种地质要素在合并的临时图件上分别采集各图层属性。

2.1.4 投影转换及文件格式转换阶段

将分层文件进行成批投影转换,形成高斯北京、经纬度无投影坐标(以秒为单位)的数据成果。然后进行文件格式转换,即MapGIS数据向ArcInfo格式转换是通过MapGIS文件转换功能输出双精度的E00文件,通过E00文件得到PC ArcInfo的数据,并重建拓扑关系。

2.1.5 最终检查及内部验收阶段

检查各文件夹中文件放置是否正确,再次检查全要素数字化地质图是否符合规范,各种文档是否齐全。

MapGIS数据采集工作流程,见图1。

图 1 MapGIS数据采集工作流程图 2.2 数据处理过程

MapGIS格式数据为基础综合处理工作方法与技术流程,可分为两种情况:满标准图幅的数据、跨省界非满幅需要接缝综合处理的数据。

2.2.1 满标准图幅的数据综合处理工作方法与技术流程

为了便于工作和质量监控,将MapGIS格式数据综合处理过程分为6个步骤:

(1)准备工作。查清各省图幅数据情况,包括单幅图各种文件是否齐全、投影参数、原地质图的坐标系统,单图幅数据是否跨省、数据是否采集满幅等,并输出含有省界的全国1∶200 000国际分幅接图表,为下一步工作做好准备。

(2)目录整理、图层命名标准化。严格按要求进行单图幅目录标准化,建立八个相应的标准文件夹。选择图层,将所有整饰图层文件及非《地质图空间数据库建设工作指南(2.0版)》中的图层属性文件删除,修改图层命名使其标准化。

(3)各图层属性结构标准化。在MapGIS属性管理库中把属性结构按《地质图空间数据库建设工作指南(2.0版)》各图层属性表中数据项要求,对数据项名称、顺序、类型和长度等进行修改、增加缺少的数据项,删除多余数据项。

(4)各图层属性数据项中图元编号标准化。检查L02H,D01J(D02J、D03J、D04J),L02S,D01D等图层中线或弧段长度是否有坐标点超过500点的线或弧段,并对坐标点超过500点的线或弧段进行处理后,多边形图层要重新建立拓扑关系,压缩存盘。按标准重新赋值图元编号。

(5)投影变换、E00格式输出。投影转换前分别建立经纬度文件夹,放置准备进行投影变换的各图层文件。按目录采用成批投影转换方法进行投影变换。避免了个别文件的投影错误。文件格式转换,即MapGIS数据输出E00格式数据。格式转换后得到的E00文件,其名称按图层标准名称来命名。

(6)检查阶段。对前面整合的数据进行100%的自检、互检和组检。

2.2.2 非满幅的图幅数据综合处理工作方法与技术流程分为7个步骤:

(1)准备工作。同满标准图幅的数据综合处理准备工作阶段一致,检查分层数据文件和图形数据文件的情况,做好准备工作。

(2)目录整理、图层命名标准化。图层命名标准化与满标准图幅的数据综合处理图层命名标准化一致。

(3)图层属性结构标准化。分别修改所涉及省的各个分层文件的属性结构,使其标准化,方法与满标准图幅的数据综合处理图层命名标准化一致。

(4)分层数据组合接缝。用一省的省界线与内图框制作裁剪框,如果地质体界线(D01J.WL)中没有省界线,则用多边形图层中省界弧段提取省界线,随后连接成一条线与内图框形成裁剪框。另外,当省界线以河为界时,以河岸为界,做裁剪框的一部分。裁剪框用于裁剪分层数据。裁剪后,将两省或三省分层数据分别添加到一起进行组合,同时进行拓扑错误检查,修改直至无误。

(5)属性数据项中图元编号标准化阶段。

(6)投影变换、E00格式输出阶段。

(7)检查阶段。后三个阶段与满标准图幅的数据综合处理工作方法一致。

3 数据样本描述

一个标准图幅中主要包括如下文件:栅格数据文件、全要素矢量化地质图数据文件、MapGIS各图层数据文件(包括高斯\经纬度两种格式数据)、ArcInfo各图层数据文件、E00数据文件、属性库(*.DBF)、主要电子文档:元数据(图幅、分层、图层属性等说明)、说明文件(图饰图例库、修改字段、为制图要求添加注释图层等说明)。

全国1∶200 000数字地质图(公开版)空间数据库包括地理、地质和装饰三大类图层。地理图层中只包含水系数据,境界、居民地和交通等数据请直接使用国家基础地理信息中心的1∶250 000地形数据库;装饰图层主要用于模拟地质图输出,不带属性。水系与地质图层划分则包含具体的图层划分、命名与存储结构规则(图2)。

图 2 1∶200 000数字地质图(渭南幅)

MapGIS系统以文件的形式来管理图层空间数据和属性数据,一个文件表示一个图层。根据空间要素的几何类型不同,MapGIS用*.wt、*.wl、*.wp文件分别来存储点、线、面图层数据。

4 数据质量控制和评估

全国1∶200 000数字地质图(公开版)空间数据库项目中质量包括数据质量和软件系统质量,其中数据质量是经过数据采集和综合处理后,数字化信息与原始资料在空间位置精度与属性信息精度上的偏差程度,而软件系统质量在本项目中专指软件系统在全部满足用户需求功能和使用环境下运行的稳定性和用户满意度。

全国1∶200 000数字地质图空间数据库数据质量标准执行《地质图空间数据库建设指南(2.0版)》有关数据质量要求,并参照《数字化质量监控规范》,同时还较为系统地研究了IS09000 19113地理信息《质量基本原理》、19114地理信息《质量评价过程》等系列TC211标准,用以指导全国1∶200 000数字地质图(公开版)空间数据库建设。

对于数字化地质图同时引用了《区域地质图图例(1∶50 000)》(GB958−89)、《1∶200 000地质图地理底图编绘规范及图式》(DZ/T0160−95)、《地质图用色标准及用色原则》(DZ/T 0179−1997)及1∶200 000地质图出版图有关要求。

软件系统质量标准参照有关国家标准和地质调查行业软件工程规范要求执行。

该数据建库参与单位及各项目负责人员见表2.

表 2Table 2 表 2 参与数据建库的单位及各项目负责人员列表 序号 地区 建库图幅数量 建库项目参与单位 项目负责人 1 西藏部分 12 西藏自治区地质调查院 徐开锋 2 西藏部分 16 山东省国土资源信息中心 李军 3 山东部分 15 山东地勘局遥感中心 李军 4 山东部分 3 山东省地质科学实验研究院 5 山东部分 3 山东地矿信息中心 6 山东部分 3 山东省第七地质勘查院 7 江苏部分 14 江苏省地质调查研究院 姚文江 8 湖南部分 24 湖南省地质调查院 尹建生 9 四川部分 70 四川省地调院 何思彬 10 四川部分 10 四川省地矿局化探队 11 甘肃部分 76 甘肃省地质调查院 徐东、李文胜 12 吉林部分 34 吉林省地质调查院 刘建民 13 黑龙江部分 15 黑龙江省地调院,齐齐哈尔分院 王月平、马丽玲 14 内蒙古部分 68 内蒙古自治区地质调查院 赵军 15 山西部分 9 山西省地质调查院 孙春娟 16 湖北部分 20 湖北省地质调查院 宋丽霞 17 广西部分 48 广西壮族自治区地质调查研究院 李文鑫、马隆文 18 安徽部分 35 安徽省地质调查院 曹静平、胡海风、许卫 19 陕西部分 33 陕西省地质调查院 蔡波、谢晓波 20 青海部分 66 青海省地质调查院 侯元才、郝维杰、祁兰英 21 新疆部分 120 新疆维吾尔自治区地质调查院 肖志坚 22 辽宁部分 41 辽宁省地质矿产研究院 杨光时 23 海南部分 11 海南省地质调查院 何国伟 24 浙江部分 28 浙江省地质调查院 蔡子华 25 江西部分 30 江西省地质调查院 江西省地勘局地勘信息中心 顾敏 26 河南部分 14 河南省地质调查院 蒙胜华 27 广东部分 42 广东省地质调查院 邓勇 28 河北部分 26 河北省地质调查院 胡殿常 29 云南部分 40 云南省地勘局区调队 云南省地勘局信息中心 云南省地勘局第一、二、三、四、五地质队 何家学、谢蕴宏 30 宁夏部分 19 宁夏回族自治区地质调查院 李天斌 31 贵州部分 41 贵州省地质调查院 张泽标 32 福建部分 31 福建省地质调查研究院 潘金滇、张顺金、李建豪 表 2 参与数据建库的单位及各项目负责人员列表 5 数据使用方法和建议

本数据集中的数据为标准shapefile文件,主流的GIS软件均可读写数据。系统采用先进的系统体系结构,开放式客户机/服务器(C/S)模式;快速的数据响应速度,系统能够比较迅速响应用户操作;强有力的数据操作管理,数据存取操作和管理采用国际先进的空间数据库管理模式(ArcSDE+Microsoft SQL Server 2000);友好的操作界面采用菜单和工具条相结合来进行操作,操作方便、使用简单。用户可用SQL Server等主流数据库编程语言调用相关函数库读写数据,实现数据批处理。

致谢:在全国1∶200 000数字地质图空间数据库8年建设过程中,有大批专家直接参与其中,有很多领导具体协调本项目的工作,有一批老地质工作者和地调系统以外的同仁给予了技术指导与咨询。主要有(按姓氏笔划排名):

河北省:王丽亚,刘恩华,宋朝辉,张晔卿,张爱丽,张崇山,李树林,胡殿常,徐岩。

山西省:卫根,方立鹤,王美芳,任翠芳,先小群,刘时雨,刘坤藻,刘得佑,刘惠敏,孙春娟,严谨,吴少荣,宋玉萍,宋红梅,张亚仙,张青梅,张桂英,张素贞,张福忠,李永厚,李红霞,李振国,李效广,李雪萍,李德胜,李慧勤,杨丙全,杨艳丽,沈玉玲,陈志刚,岳炜谦,郑勤成,胡瑞香,胡瑞锋,贺文莲,赵娟,赵善付,郭立卿,钱兆卉,顾其昌,高建平,商培林,曹屹璇,曹润花,梁宝丽,梁宝珍,续世朝,董消雷,谢桂芳。

内蒙古自治区:马丽萍,毛德鹏,王挨顺,王涛,丛丽娟,孙玉梅,孙政平,朱绅玉,吴之理,张丽莉,张彤,张梅,李玉玺,李建莉,杨文海,沈存利,苏宏伟,邵和明,陈少华,明珠,武宏伟,武跃勇,封书凯,胡凤翔,赵军,徐宗培,常忠耀,梁立新,黄增芳,廖蕾,蔡红军。

辽宁省:王丽艳,杨光时,桥秀芬。

吉林省:王立民,史新增,关键,刘冶兵,刘建民,吕振江,庄毓敏,许良久,吴玉章,李树田,武贵禄,郑传久,赵庆英,崔光浩,梁伟杰。

黑龙江省:王月平,王琳,曲关生,刘中华,刘晓光,张魏,李晓英。

江苏省:马秋斌,刘晓玲,刘聪,华建伟,朱建南,朱静萍,许鸿基,张于,李晓燕,李维佳,李锋,陆瑞宝,周洁,姚文江,赵立鸿,唐海燕,徐蓉,袁晓军,谢祖齐,谢增平,薛宁菊。

浙江省:叶建平,白世强,汪庆华,陆祖达,陈国锋,唐丽娟,袁航,解怀生,蔡子华。

福建省:文斐成,石建基,许勇波,宋咏宪,张明辉,张顺金,李建豪,连天萍,陈明光,陈涌,林雄达,郭小平,高海青,黄衡,潘金滇。

安徽省:王义梅,王文联,王永敏,王晓梅,刘丽利,许卫,何义权,李明,杨世学,陆伍云,胡亚君,胡海风,唐永诚,徐巨平,高章红,常丹燕,曹静平,梁善荣,潘延吉,戴峰。

江西省:刘军,赵鸣雍,徐涛,顾敏,滑舸。

山东省:丁慧,于广亭,于学锋,孔艳,尹琦,王凤华,王世进,王芳,王虹,王海芹,王敏,王敬洁,冯琦,史辉,田文新,艾宪森,仲卫国,任志康,刘书才,刘伟,刘福魁,安郁宏,纪兆发,纪军,宋之龙,张帆,张庆,张成基,张相峰,张淑芳,李军,杨东来,杨哲,陈保民,范存国,夏立宪,柴本红,盛文静,黄文慧,解立业。

河南省:马雪琴,马瑞华,宁书云,关保德,朱玉芬,杨文智,班孝章,韩慎友,蒙胜华,蔡冬梅,燕长海。

湖北省:马瑛,王英,王志元,王剑辉,刘幼萍,吴传荣,吴细松,宋丽霞,杨金权,陈晓林,周小娟,金经炜,赵文健,黄建军,黄祥芝,舒国庆,谢名英,潘玉青,潘杰锋。

湖南省:马爱军,尹建生,文宁,车勤建,李元卓,杨晓青,苏晓艳,周国祥,胡能勇,贺安生,赵晓红,殷如新,贾宝华,曹湘潭,彭晟,曾钦旺,蔡让平。

广东省:邓勇,刘祚坚,许汉森,何鸿耀,余宙,李军,李海新,杜海燕,杨慧,周国强,周菊香,林庆华,林惠娟,罗鑫,黄宇辉,谢慧芳,谭健。

广西壮族自治区:马隆文,韦秋妮,韦盛亮,宁雄荣,石剑龙,刘明章,刘真,何翠云,吴诒,张耿,张亚才,张伟天,张忠伟,李文鑫,李玉坤,李志才,杨秀芳,陆华里,陈玉兰,陈凌云,周怀玲,周娟华,林崇献,树皋,胡自宁,钟仕全,唐娟红,梁保定,黄志强,黄宗霞,蒋艳玲,蔡贺清。

海南省:丁式江,王大英,王宜合,何圣华,何国伟,陆清,陈育文,陈朝兰,卓耀青,符策锐,黄香定。

四川省:于姝,马红熳,邓晓丽,兰俊,何伟,何思彬,何瑶,吴安东,张向东,张芸,张萍,李敏,李银兵,杨芳,杨荣,陈斌,周雪梅,姚冬生,骆耀南,凌小明,唐彩琼,秦举礼,黄与能,赖绍民,赖贤友,廖敏,魏萍。

贵州省:张扑,张林,张权莉,张泽标,杜黔枫,汪玉琼,岳云茹,袁义生。

云南省:马腾,王臣兴,王树琼,王珏,王陶,包佳凤,田洪亮,刘文华,刘德丽,吕世琨,何家学,何艳丽,何智德,余丽文,吴建忠,张秀芬,张笃信,张富良,张蓉,李文昌,李华,李红,李定平,李静,杨志勇,杨建波,杨荣根,苏兰,陈飞,陈少玲,周云,周耀军,岳伟,施建萍,胡居贵,胡忠富,夏迎红,秦德厚,曾宪华,曾祥文,蒋承兴,谢蕴宏,雷九云,熊家镛,蔡玲婷,颜景耀,魏福玉。

西藏自治区:万琳娜,小其米,扎桑,王季顺,张学全,杜光伟,陈富琦,陈德泉,拉珍,罗丰才,郑有业,贺丽,徐开锋,秦丽,惠建彻,琼达,蒋光武,魏玲。

陕西省:丰文庆,田小宇,许丽,许纯义,张拴厚,李铁,杨妮,沙江,卓联昌,周宣,谢晓波,蔡波。

甘肃省:马惠萍,王俊,白国荣,孙金兰,汤华,张玉平,张新华,李天柱,李文胜,杜录平,陈进明,徐东,高善美,童晓华,霍仁福。

青海省:王冬青,王占昌,刘永安,刘春娥,祁兰英,李萍萍,李朝兰,陈正兴,陈立,陈丽娟,郝维杰,候元才,曹生秀,戚燕娥。

宁夏回族自治区:张小妹,张韬,李天斌,李宁顺,范晋安,郅玉棉,顾其昌,潘行适。

新疆维吾尔族自治区:王学彦,王晓琳,王瑞,孙海芳,安德胜,安德盛,毕武,佟美华,吴广涛,张鹏,张玉萍,张道乐,李万忠,李天护,李媛,杨春晓,肖志坚,周军,郑立新,段新力,胡华辉,赵洁,赵新玲,倪颖,夏建勋,袁尔乾,韩小明,潘朝霞。

在京单位:左爱莉,任效颖,刘红光,刘海蓉,刘锋英,池京云,吴仲煜,吴利文,张斌,李景朝,李裕伟,李超岭,杨东来,邱丽华、陈辉,郎宝平,赵精满,曹瑞欣,梁莉,曾青石。

参加数据综合处理的专家有:杨东来,刘锋英,池京云,刘红光,梁莉,郎宝平,刘海蓉,左爱莉,李景朝,李超岭,邱丽华,曹瑞欣,陈辉,张斌,曾青石,李军,王芳,纪军,柴本红,孔艳,刘伟,盛文静,王敬洁,丁慧,赵军,张彤,张梅,霍改兰,张丽莉,丛丽娟,廖蕾,梁立新,唐海燕,朱静萍,薛宁菊,张于,李晓燕,朱建南,谢贞萍,马秋斌。

曾经参与项目管理、协调工作的领导和专家有:蒋承菘,叶天竺,周家寰,刘连和,贾其海,王保良,叶茂,邱心飞,谭永杰,严光生,其和日格,于庆文。

提供技术咨询的专家:黄崇轲,陈克强,钱大都,高振家,田玉莹。

特别感谢黄崇轲研究员提供了长期、无私的指导与帮助。

同时感谢北京大学邬伦教授、清华大学党安荣教授、国家基础地理信息中心王东华研究员、富融科技有限公司胡建国等、北京舜和公司徐海波先生以及中国地质科学院肖克炎、张永波的大力支持。

1 Introduction

The 1∶200 000 geological map is the most widely used map for geological routine work, and is of important value for basic geological survey, evaluation of mineral resources, groundwater exploration, engineering survey and geological environment investigation and assessment; the construction of the China’s national 1∶200 000 digital geological map spatial database is of great significance to improve the efficiency of the aforementioned geological work (Liu FY, et al., 2002; Tang HY, 2002; Li J, 2006; Liu YC, 2013).

The CNDGM-PVSD came into being under the background of China’s duration of the 8th and 9th Five-Year-Plans, when the investment in geological exploration had been decreasing annually while the ore-searching risks were increasingly soaring. At that circumstances, the State was eager to deploy reasonably the pre-exploration work so as to ensure the breakthroughs of geological research and mineral resources exploration. The GIS system was then recognized as the most advanced technical-aided approach that can precisely detect the ore-searching perspectives, the CNDGM-PVSD based on GIS system was consequently defined as one of China’s fundamental databases to be constructed along the process of incubation, pilot testing, and massive production, which was seriously treated as the first key project of China’s geology-exploration information system construction.

Table 1 is a brief introduction of the spatial data metadata of CNDGM-PVSD.

表 1Table 1 表 1 Metadata Table of Database (Dataset) Items Description Database(dataset) name China National Digital Geological Map (Public Version at 1∶200 000 Scale) Spatial Database Database(dataset) authors Li Chenyang, Development and Research Center of China Geological Survey Wang Xinchun, China Geological Survey He Chunzhen, Development and Research Center of China Geological Survey Wu Xuan, Development and Research Center of China Geological Survey Kong Zhaoyu, Development and Research Center of China Geological Survey Li Xiaolei, Development and Research Center of China Geological Survey Data acquisition time 1957—1995 Geographic area Mainly the land area of the People's Republic of China of 72°~138°E and 16°~56°N; all the map-sheets at scale of 1∶200 000 are coded. Data format .mpj, .shp, .doc Data size 90 GB Data service system URL http://dcc.cgs.gov.cn Fund project The Geological Survey of the Former Ministry of Geology and Mineral Resources Project and China Geological Survey Project (S3.2.1.1-27, 19961831004015-225, 199918310102-08, 19991831008015, 199918310120). Language Chinese Database(dataset) composition The dataset consists of 1 163 digital maps at scale of 1∶200 000; and each of the digital geological map (i.e. a map-sheet) contains the following files: a map-sheet grid data file, all-factor vectored geological map data files, MapGIS graphic layers data files (including data in both Gauss\meridian formats), ArcInfo graphic layer data, E00 data files, and attribute database (*.DBF). Main electronic documents: metadata (illustrations for map-sheet, graphic layer, and graphic layer attribute, etc.), illustrative documentation (on legends and decorations, modified field, annotation graphic layer for map-making). 表 1 Metadata Table of Database (Dataset) 2 Method of Data Collection and Processing

The geological data of most provinces and autonomous regions used in the construction of CNDGM-PVSD is mainly sourced from the measured 1∶200 000 regional geological exploration reports, geological maps, mineral resources maps that were fulfilled over the 3 decades from mid-1950s to early 1990s; the other vital sources data include the “Correlation Researches on Provincial Multiple Stratigraphic Divisions”, the “Provincial Regional Geological Memoirs”, the results of 1∶50 000 regional geological surveys, the related geological reports, research reports, and the thematic geological maps. Data collection and comprehensive processing is one of the key steps in constructing the 1∶200 000 CNDGM-PVSD.

2.1 Data Collection Process

Data collection for the database construction is completed by MapGIS 6.7; and the process of collecting data can be divided into 5 stages:

2.1.1 Preparation Stage

(1) Data preparation. According to the selected map-sheets, relevant information (including maps, reports, analysis data, original filed records cards, and record books) are collected and trimmed to meet the needs of constructing the database.

(2) Document preparation. Before constructing the database, a highly practical operation instructions is compiled based on theGuidebook for the Constructing Geological Map Spatial Database (2.0 version); efforts are also made to compile various attribute cards (tables), working logs, self-inspection tables, mutual inspection tables, group inspection tables and other documents.

(3) System database preparation. On the basis of the MapGIS system database, a variety of rock symbols, line patterns, color box, and indices tables of cartographic parameters are modified or supplemented.

2.1.2 Data Collection Stage

(1) Scanning the paper-back maps to form digital grid files. When scanning the polyester-filmed base geological maps or the original copies of paper-back geological maps (or geology and mineral resources maps), the sharpness and complexity of the original maps are essential factors for selecting the appropriate scanning resolution in every effort to reduce the scanning error. Color scanning should be above 150 dpi, while the black-and-white scanning should be above 300 dpi.

(2) Graphic data collection and editing, i.e., the editing and modification of the spatial data of points, lines, polygons and other graphic elements. In order to ensure the quality of the spatial database, knots shall be created between the digital graphic lines; all the polygons shall be enclosed; the graphical data and attribute data shall be corresponded one to another respectively; and any graphic error that goes beyond the standard for mapping on relative scales shall be avoided; especially, the spatial error standard should be obeyed. The line patterns, rock symbols, legends and various point parameters shall all follow the relevant national, ministry and industry standards. Therefore, for line or point, their attributes should be selected in advance and then are collected separately.

Before the collection of graphics according to the vectorized layers, a series of standard folders are set up, and the system path is well laid out. In the process of graphic vectorization, all the geological factors are vectorized in different layers. Digitalized collection of layered graphics shall be according to the following sequence: internal graphic frame → meridian nets → rivers → lakes (reservoirs) → faults →dikes → Quaternary strata → intrusives → volcanic rocks → quasi-strata → other strata. In other graphic layers, there is no need to repeatedly use the graphic layer factors, hence, the vectorization sequence can be determined at will.

After finishing the editing of elements of points and lines, the digitalized plain-colored geological map can be modified and corrected. The plain-colored map can be output after the aforementioned modification and correction. The map-sheet self-checking and mutual inspection and team check can be done later.

2.1.3 Making Map-layers and Attribute-editing Stage

(1) Setting up graphic layer files. According to the graphic layer hosting the geological body, the data file (of Polygons, Lines and Points) is extracted from the comprehensive polygon data files respectively from the different graphic layers. The line-graphic layer data files can be established respectively through the transformations from the arcs to the line files. The Points are created independently in their original layer files using their hosting layers respectively.

(2) Establishing the attribute structure and inputting the attributes. According to the requirements for the data fields in the attribute structure of each layer, the geological experts check the data from geological reports, explanatory notes to the geological maps, and many other related references, and then collect the attributes of various geological factors in the geological maps in different layers, and finally collate them on the comprehensive temporary map.

2.1.4 Projection-transforming and Format-transforming Stage

The graphic layers are put into the projection transformation in batches to form the digital results of the Gauss Beijing Coordinate System and the meridian non-projection coordinate system (with per second as the unit). Then the file formats are transformed; i.e., the MapGIS files are transformed through its own dual-precision output function to the E00 files which are later used to obtain the PC ArcInfo data, and meanwhile the topological relationship is re-established.

2.1.5 Final Inspection and Self-checking Stage

Checking whether the files in each folder are placed correctly, and whether the all-factor digitized geological map is in conformity with the specification, and documents are complete.

The MapGIS data collection work flow is shown in Fig. 1.

图 1 The Workflow Chart for MapGIS Data Collection 2.2 Data Processing

According to the basic comprehensive processing methodology and technical flowchart, the MapGIS format data processing can be treated in 2 ways: (1) the treatment of full map-sheet standard data, and (2) the collation of non-full map-sheet crossing provincial border data.

2.2.1 Full map-sheet standard data processing and its technical work flow

For the convenience of operation and quality control, the processing of the MapGIS format data is divided as 6 steps:

(1) Preparation. Inspect the conditions of the all the provincial map-sheets, including: whether all the documents for the full-sized map-sheet are ready, what the projection parameters are, what the coordinate system of the original geological map is, whether the full-sized map-sheet is trans-provincial boundary, whether the data for the full-sized map-sheet is complete or not; after all these are ensured, efforts should be made to output an international map-sheet index diagram which embraces the whole national boundaries at scale of 1∶200 000.

(2) Directory trim and graphic layer nomination standardization. Standardize the full-sized map-sheet directory strictly according to the requirements, and establish 8 corresponding standard folders. Select the graphic layer, delete all graphic layer attribute files that are contained in the trimmed map layer files and those that are not identified by the ‘Guidebook for the Constructing Geological Map Spatial Database (2.0 version)’, and modify the graphic layer names to make them be standardized.

(3) Attribute structure of each graphic layer standardization. Modify the name of data entries, sequence, types, and length in the graphic layer attribute structure according to the Guidebook for the Constructing Geological Map Spatial Database (2.0 version), supplement the lacked data entries and delete the unnecessary entries.

(4) Code’s standardization of the map elements in each graphic layer’s attribute entries. Check if any of the line’s or arc’s lengths in the graphic layer L02H, D01J (D02J, D03J, D04J), L02S, D01D exceeds more than 500 points above the coordinate point; these exceeding ones would be re-processed, and their topological relationship should be re-established and compressed/saved into the disc; and furthermore, their codes should be re-coded.

(5) Projection transformation and E00 format output. Create meridian folders respectively before projection transformation so as to load the graphic layer files preparing for the projection transformation. Projection transformation is fulfilled in batches according to the directory, avoiding projection error of individual file. File format transformation, i.e., the MapGIS format data is output as E00 format data, the name of latter one is coded as that of the standardized graphic layer.

(6) Inspection. The aforementioned integrated data should be undergone 100% self-inspection, mutual inspection and team inspection.

2.2.2 Non-full map-sheet crossing provincial border data processing and its technical work flow

(1) Preparation. Do as the same as that of the full map-sheet standard data processing; and check the layered data files and graphic data files for further processing.

(2) Directory trimming and standardization of nomination of the graphic layers. Do the same as that of the aforementioned full map-sheet processing.

(3) Standardization of graphic layer attribute structure. Modify the attribute structure of each related provincial layer file respectively, and improve them to the level of standardization using the same methods as the aforementioned in the full map-sheet processing.

(4) Graphic layer data collation. Use a certain provincial boundary and the inner map frame to create the cutting-frame; if there is no provincial boundary in the geological body boundary (D01J.WL), then extract the provincial boundary from the polygon graphic layer, and connect it to a straight line so as to combine it with the inner map frame to form the cutting-frame. In addition, when the provincial boundary is actually a river, use the river bank stretching curve as the provincial boundary and make it as the partial of the cutting-frame. The cutting frame is used to cut the graphic layer data. After cutting, the layer data of 2 or 3 provinces are added together separately, and then collate them together; meanwhile, check the errors of topology and correct the errors till no more error occurs.

(5) Standardization of codes of map elements in the attribute data.

(6) Projection transformation, and E00 format output.

(7) Inspection.

The last three steps are the same as that of the aforementioned full map-sheet processing.

3 Data Sample Description

A standard map-sheet data sample mainly includes the following files: grid data file, all-factor vectorized geologic data file, MapGIS graphic layer data files (including two formats: Gauss/meridian, ArcInfo layer data files, E00 data files, attribute database (*.DBF), and main electronic documents which embrace meta-data (illustrations of map sheet, map layers, map layer attributes), and illustrative documents (illustrations on legends, modified field names, annotation graphic layer for map-making).

The 1∶200 000 CNDGM-PVSD includes such three kinds of graphic layers as geography, geology and decoration. Geographic map layer contains only water system data; as for the boundaries, residential places and traffic data, please directly use the National Basic Geographic Information Center’s 1∶150 000 topology database; the decorative map layer is mainly used to simulate the output of geological map and has no attribute data. The division of water system and geological map layer includes concrete map layer division, nomination, and storage structure rules (Fig. 2).

图 2 The Sample of 1∶200 000 Digital Geological Map (Weinan Mapsheet)

MapGIS system manages the spatial data and attribute data in the form of files, with one file representing a map layer. According to the different geometric elements of the spatial factors, MapGIS stores the data of point, line and area map layers respectively in the forms of *.wt, *.wl, and *.wp files.

4 Data Quality Control and Evaluation

The quality of 1∶200 000 CNDGM-PVSD project includes the data quality and the software system quality. As for the data quality, it is valued by the degree of deviation of the spatial precision and the attribute information accuracy between the comprehensively collected and processed digital information and the original paper-back data; while for the software system quality in this project, it refers exclusively to the stability of the accessing system under all the inquiring operations and running environments when the users are fully served with the highest satisfactions.

The quality standards of the 1∶200 000 CNDGM-PVSD follows the requirement for data quality specified in the Guidebook for the Constructing Geological Map Spatial Database (2.0 version) and are referred to the then being-calibrated Regulations on Digitalization Quality Monitoring; meanwhile, the essentials of the ISO9000 19113 Basic Principles of Geographic Information Quality, 19114 Geographic Information Quality Evaluation Process, and the TC211 serial standards have also been systematically added to guide the construction process of the 1∶200 000 CNDGM-PVSD.

For the digitalizing processes of the geological map, the following related regulations and requirements are also adopted: Legends for Regional Geological Maps (at scale of 1∶50 000) (GB958−89), Regulations and Graphic Patterns for Geological Map-Oriented Geographic Base Map (at scale of 1∶200 000) (DZ/T0160−95), and Standards and Principles for Geological Coloring(DZ/T0179−1997) as well as the requirements for formal publication of geological maps at scale of 1∶200 000.

The software system quality standards are adopted from that of the relevant national standards and from the software engineering regulations exclusively for geological survey industry.

The organizations and experts who have participated and are hence responsible for the database constructions are shown in Table 2.

表 2Table 2 表 2 Organizations and experts responsible for the 1∶200 000 CNDGM-PVSD Serial No. Regions Map-sheets Amount Organizations Experts 1 Tibet 12 Tibet Institute of Geological Survey Xu Kaifeng 2 Tibet 16 Shandong Information Center of Land & Resources Li Jun 3 Shangdong 15 Remote Sensing Center, Shandong Bureau of Geological Exploration Li Jun 4 Shandong 3 Shandong Institute of Geological Sciences Experiment 5 Shandong 3 Shandong Information Center of Geology & Mineral Resources 6 Shandong 3 Shandong 7th Institute of Geological Exploration 7 Jiangsu 14 Jiangsu Institute of Geological Survey Yao Wenjiang 8 Hunan 24 Hunan Institute of Geological Survey Yin Jiansheng 9 Sichuan 70 Sichuan Institute of Geological Survey He Sibin 10 Sichuan 10 Geochemical Exploration Team of Sichuan Geology and Mineral Resources Exploration Bureau 11 Gansu 76 Gansu Institute of Geological Survey Xu Dong, Li Wensheng 12 Jilin 34 Jilin Institute of Geological Survey Liu Jianmin 13 Heilongjiang 15 Qiqihar Branch of Heilongjiang Institute of Geological Survey Wang Yuping, Ma Liling 14 Inner Mongolia 68 Inner Mongolia Institute of Geological Survey Zhao Jun 15 Shanxi 9 Shanxi Institute of Geological Survey Sun Chunjuan 16 Hubei 20 Hubei Institute of Geological Survey Song Lixia 17 Guangxi 48 Guangxi Institute of Geological Survey Li Wenxin, Ma Longwen 18 Anhui 35 Anhui Institute of Geological Survey Cao Jingping, Hu Haifeng, Xu Wei 19 Shaanxi 33 Shaanxi Institute of Geological Survey Cai Bo, Xi Xiaobo 20 Qinghai 66 Qinghai Institute of Geological Survey Hou Yuancai, Hao Weijie, Qi Lanying 21 Xinjiang 120 Xinjiang Institute of Geological Survey Xiao Zhijian 22 Liaoning 41 Liaoning Institute of Geology and Mineral Resources Yang Shiguang 23 Hainan 11 Hainan Institute of Geological Survey He Guowei 24 Zhejiang 28 Zhejiang Institute of Geological Survey Cai Zihua 25 Jiangxi 30 Jiangxi Institute of Geological Survey, Information Center of Jiangxi Geological Exploration Bureau Gu Min 26 Henan 14 Henan Institute of Geological Survey Meng Shenghua 27 Guangdong 42 Guangdong Institute of Geological Survey Deng Yong 28 Hebei 26 Hebei Institute of Geological Survey Hu Dianchang 29 >Yunnan 40 Regional Geological Survey Team of Yunnan Geological Exploration Bureau, Information Center of Yunnan Geological Exploration Bureau, The 1st, 2nd, 3rd, 4th and 5th Geological Teams of Yunnan Geological Exploration Bureau He Jiaxue, Xie Yunhong 30 Ningxia 19 Ningxia Institute of Geological Survey Li Tianbin 31 Guizhou 41 Guizhou Institute of Geological Survey Zhang Zebiao 32 Fujian 31 Fujian Institute of Geological Survey Pan Jindian, Zhang Shunjin, Li Jianhao 表 2 Organizations and experts responsible for the 1∶200 000 CNDGM-PVSD 5 How to Use the Database

The data in this dataset is of standard shapefile, which can be accessed by mainstream GIS software. The system adopts an advanced systematic framework, and operates in an open client/server (C/S) model with fast data response speed and swift feedback to any accessing; the data operation and management is strong and powerful with the data accessing and managing being of internationally advanced spatial database management model (ArcSDE + Microsoft SQL Server 2000). The user-friendly interface is aided with menus and toolbars which can be easily operated and used. Users can adopt SQL Server and other mainstream database programming languages to apply the relevant functions to access the database and to enable data being in batch processed.

Acknowledgements: During the 8-year hard-working construction of the 1∶200 000 CNDGM-PVSD, a large number of skillful experts have directly participated in the project, and many administrative officers have specifically coordinated the crucial stages of this project; still, a group of senior geological experts and colleagues from the other industrial departments have also provided their precious technical guidance and consultation to the construction. Names of the main contributors are as follows (ranked by provinces and then by ascending sequential of their surname’s strokes in Chinese):

Hebei Province: Wang Liya, Liu Enhua, Song Chaohui, Zhang Yeqing, Zhang Aili, Zhang Chongshan, Li Shulin, Hu Dianchang, Xu Yan.

Shanxi Province: Wei Gen, Fang Lihe, Wang Meifang, Ren Cuifang, Xian Xiaoqun, Liu Shiyu, Liu Kunzao, Liu Deyou, Liu Huimin, Sun Chunjuan, Yan Jin, Wu Shaorong, Song Yuping, Song Hongmei, Zhang Yaxian, Zhang Qingmei, Zhang Guiying, Zhang Suzhen, Zhang Fuzhong, Li Yonghou, Li Hongxia, Li Zhenguo, Li Xiaoguang, Li Xueping, Li Desheng, Li Huiqin, Yang Bingquan, Yang Yanli, Shen Yuling, Chen Zhigang, Yue Weiqian, Zheng Qincheng, Hu Ruixiang, Hu Ruifeng, He Wenlian, Zhao Juan, Zhao Shanfu, Guo Liqing, Qian Zhaohui, Gu Qichang, Gao Jianping, Shang Peilin, Cao Yixuan, Cao Runhua, Liang Baoli, Liang Baozhen, Xu Shichao, Dong Xiaolei, Xie Guifang.

Inner Mongolia Autonomous Region: Ma Liping, Mao Depeng, Wang aishun, Wang Tao, Cong Lijuan, Sun Yumei, Sun Zhengping, Zhu Shenyu, Wu Zhili, Zhang Lili, Zhang Tong, Zhang Mei, Li Yuxi, Li Jianli, Yang Wenhai, Shen Cunli, Su Hongwei, Shao Heming, Chen Shaohua, Ming Zhu, Wu Hongwei, Wu Yueyong, Feng Shukai, Hu Fengxiang, Zhao Jun, Xu Zongpei, Chang Zhongyao, Liang Lixin, Huang Zengfang, Liao Lei, Cai Hongjun.

Liaoning Province: Wang Liyan, Yang Guang Shi, Qiao Xiufen.

Jilin Province: Wang Limin, Shi Xinzeng, Guan Jian, Liu Yebing, Liu Jianmin, Lyu Zhenjiang, Zhuang Yumin, Xu Liangjiu, Wu Yuzhang, Li Shutian, Wu Guilu, Zheng Chuanjiu, Zhao Qingying, Cui Guanghao, Liang Weijie.

Heilongjiang Province: Wang Yueping, Wang Lin, Qu Guansheng, Liu Zhonghua, Liu Xiaoguang, Zhang Wei, Li Xiaoying

Jiangsu Province: Ma Qiubin, Liu Xiaoling, Liu Cong, Hua Jianwei, Zhu Jiannan, Zhu Jingping, Xu Hongji, Zhang Yu, Li Xiaoyan, Li Weijia, Li Feng, Lu Ruibao, Zhou Jie, Yao Wenjiang, Zhao Lihong, Tang Haiyan, Xu Rong, Yuan Xiaojun, Xie Zuqi, Xie Zengping, Xue Ningju.

Zhejiang Province: Ye Jianping, Bai Shiqiang, Wang Qinghua, Lu Zuda, Chen Guofeng, Tang Lijuan, Yuan Hang, Xie Huai Sheng, Cai Zihua.

Fujian Province: Wenfei Cheng, Shi Jianji, Xu Yongbo, Song Yongxian, Zhang Minghui, Zhang Shunjin, Li Jianhao, Lian Tianping, Chen Mingguang, Chen Yong, Lin Xiongda, Guo Xiaoping, Gao Haiqing, Huang Heng, Pan Jindian.

Anhui Province: Wang Yimei, Wang Wenlian, Wang Yongmin, Wang Xiaomei, Liu Lili, Xu Wei, He Yiquan, Li Ming, Yang Shixue, Lu Wuyun, Hu Yajun, Hu Haifeng, Tang Yongcheng, Xu Juping, Gao Zhanghong, Chang Danyan, Cao Jingping, Liang Shanrong, Pan Yanji, Dai Feng.

Jiangxi Province: Liu Jun, Zhao Mingyong, Xu Tao, Gu Min, Hua Ge.

Shandong Province: Ding Hui, Yu Guangting, Yu Xuefeng, Kong Yan, Yin Qi, Wang Fenghua, Wang Shijin, Wang Fang, Wang Hong, Wang Haiqin, Wang Min, Wang Jingjie, Feng Qi, Shi Hui, Tian Wenxin, Ai Xiansen, Zhong Weiguo, Ren Zhikang, Liu Shucai, Liu Wei, Liu Fukui, An Yuhong, Ji Zhaofa, Ji Jun, Song Zhilong, Zhang Fan, Zhang Qing, Zhang Chengji, Zhang Xiangfeng, Zhang Shufang, Li Jun, Yang Donglai, Yang Zhe, Chen Baomin, Fan Cunguo, Xia Lixian, Chai Benhong, Sheng Wenjing, Huang Wenhui, Xie Liye.

Henan Province: Ma Xueqin, Ma Ruihua, Ning Shuyun, Guan Baode, Zhu Yufen, Yang Wenzhi, Ban Xiaozhang, Han Shenyou, Meng Shenghua, Cai Dongmei, Yan Changhai.

Hubei Province: Ma Ying, Wang Ying, Wang Zhiyuan, Wang Jianhui, Liu Youping, Wu Chuanrong, Wu Xisong, Song Lixia, Yang Jinquan, Chen Xiaolin, Zhou Xiaojuan, Jin Jingwei, Zhao Wenjian, Huang Jianjun, Huang Xiangzhi, Shu Guoqing, Xie Mingying, Pan Yuqing, Pan Jiefeng.

Hunan Province: Ma Aijun, Yin Jiansheng, Wen Ning, Che Qinjian, Li Yuanzhuo, Yang Xiaoqing, Su Xiaoyan, Zhou Guoxiang, Hu Nengyong, He Ansheng, Zhao Xiaohong, Yin Ruxin, Jia Baohua, Cao Xiangtan, Peng Sheng, Zeng Qinwang, Cai Rangping.

Guangdong Province: Deng Yong, Liu Zuojian, Xu Hansen, He Hongyao, Yu Zhou, Li Jun, Li Haixin, Du Haiyan, Yang Hui, Zhou Guoqiang, Zhou Juxiang, Lin Qinghua, Lin Huijuan, Luo Xin, Huang Yuhui, Xie Huifang, Tan Jian.

Guangxi Zhuang Autonomous Region: Ma Longwen, Wei Qiuni, Wei Shengliang, Ning Xiongrong, Shi Jianlong, Liu Mingzhang, Liu Zhen, He Cuiyun, Wu Yi, Zhang Geng, Zhang Yacai, Zhang Weitian, Zhang Zhongwei, Li Wenxin, Li Yukun, Li Zhicai, Yang Xiufang, Lu Huali, Chen Yulan, Chen Lingyun, Zhou Huailing, Zhou Juanhua, Lin Chongxian, Shu Gao, Hu Zining, Zhong Shiquan, Tang Juanhong, Liang Baoding, Huang Zhiqiang, Huang Zongxia, Jiang Yanling, Cai Heqing.

Hainan Province: Ding Shijiang, Wang Daying, Wang Yihe, He Shenghua, He Guowei, Lu Qing, Chen Yuwen, Chen Chaolan, Zhuo Yaoqing, Fu Cerui, Huang Xiangding.

Sichuan Province: Yu Shu, Ma Hongman, Deng Xiaoli, Lan Jun, He Wei, He Sibin, He Yao, Wu Andong, Zhang Xiangdong, Zhang Yun, Zhang Ping, Li Min, Li Yinbing, Yang Fang, Yang Rong, Chen Bin, Zhou Xuemei, Yao Dongsheng, Luo Yaonan, Ling Xiaoming, Tang Caiqiong, Qin Juli, Huang Yuneng, Lai Shaomin, Lai Xiangyou, Liao Min, Wei Ping.

Guizhou Province: Zhang Pu, Zhang Lin, Zhang Quanli, Zhang Zebiao, Du Qianfeng, Wang Yuqiong, Yue Yunru, Yuan Yisheng.

Yunnan Province: Ma Teng, Wang Chenxing, Wang Shuqiong, Wang Jue, Wang Tao, Bao Jiafeng, Tian Hongliang, Liu Wenhua, Liu Deli, Lyu Shikun, He Jiaxue, He Yanli, He Zhide, Yu Liwen, Wu Jianzhong, Zhang Xiufen, Zhang Duxin, Zhang Fuliang, Zhang Rong, Li Wenchang, Li Hua, Li Hong, Li Dingping, Li Jing, Yang Zhiyong, Yang Jianbo, Yang Ronggen, Su Lan, Chen Fei, Chen Shaoling, Zhou Yun, Zhou Yaojun, Yue Wei, Shi Jianping, Hu Jugui, Hu Zhongfu, Xia Yinghong, Qin Dehou, Zeng Xianhua, Zeng Xiangwen, Jiang Chengxing, Xie Yunhong, Lei Jiuyun, Xiong Jiayong, Cai Lingting, Yan Jingyao, Wei Fuyu.

Tibet Autonomous Region: Wan Linna, Xiao Qimi, Zha Sang, Wang Jishun, Zhang Xuequan, Du Guangwei, Chen Fuqi, Chen Dequan, La Zhen, Luo Fengcai, Zheng Youye, He Li, Xu Kaifeng, Qin Li, Hui Jianche, Qiong Da, Jiang Guangwu, Wei Ling.

Shaanxi Province: Feng Wenqing, Tian Xiaoyu, Xu Li, Xu Chunyi, Zhang Shuanhou, Li Tie, Yang Ni, Sha Jiang, Zhuo Lianchang, Zhou Xuan, Xie Xiaobo, Cai Bo.

Gansu Province: Ma Huiping, Wang Jun, Bai Guorong, Sun Jinlan, Tang Hua, Zhang Yuping, Zhang Xinhua, Li Tianzhu, Li Wensheng, Du Luping, Chen Jinming, Xu Dong, Gao Shanmei, Tong Xiaohua, Huo Renfu.

Qinghai Province: Wang Dongqing, Wang Zhanchang, Liu Yongan, Liu Chun'e, Qi Lanying, Li Pingping, Li Chaolan, Chen Zhengxing, Chen Li, Chen Lijuan, Hao Weijie, Hou Yuancai, Cao Shengxiu, Qi Yan'e.

Ningxia Hui Autonomous Region: Zhang Xiaomei, Zhang Guiying, Zhang Fuzhong, Zhang Tao, Li Tianbin, Li Ningshun, Fan Jin'an, Zhi Yumian, Zhao Juan, Gu Qichang, Pan Xingshi.

Xinjiang Uygur Autonomous Region: Wang Xueyan, Wang Xiaolin, Wang Rui, Sun Haifang, An Desheng, An Desheng, Bi Wu, Tong Meihua, Wu Guangtao, Zhang Peng, Zhang Yuping, Zhang Daole, Li Wanzhong, Li Tianhu, Li Yuan, Yang Chun xiao, Xiao Zhijian, Zhou Jun, Zheng Lixin, Duan Xinli, Hu Huahui, Zhao Jie, Zhao Xinling, Ni Ying, Xia Jianxun, Yuan Erqian, Han Xiaoming, Pan Zhaoxia.

Beijing: Zuo Aili, Ren Xiaoying, Liu Hongguang, Liu Hairong, Liu Fengying, Chi Jingyun, Wu Zhongyu, Wu Liwen, Zhang Bin, Li Jingchao, Li Yuwei, Li Chaoling, Yang Donglai, Qiu Lihua, Chen Hui, Lang Baoping, Zhao Jingman, Cao Ruixin, Liang Li, Zeng Qingshi.

Experts participating in the data processing are: Yang Donglai, Liu Fengying, Wang Xinchun, Chi Jingyun, Liu Hongguang, Liang Li, Kong Zhaoyu, Lang Baoping, Liu Hairong, Zuo Aili, Li Jingchao, Li Chaoling, Qiu Lihua, Cao Ruixin, Chen Hui, Zhang Bin, Zeng Qingshi, Li Jun, Wang Fang, Ji Jun, Chai Ben hong, Kong Yan, Liu Wei, Sheng Wenjing, Wang Jingjie, Ding Hui, Zhao Jun, Zhang Tong, Zhang Mei, Huo Gailan, Zhang Lili, Cong Lijuan, Liao Lei, Liang Lixin, Tang Haiyan, Zhu Jingping, Xue Ningju, Zhang Yu, Li Xiaoyan, Zhu Jiannan, Xie Zhenping, Ma Qiubin.

Administrative officers and experts who have participated in the project management and coordination are: Jiang Chengsong, Ye Tianzhu, Zhou Jiahuan, Liu Lianhe, Jia Qihai, Wang Baoliang, Ye Mao, Qiu Xinfei, Tan Yongjie and Yan Guangsheng, Qihe Rige, Yu Qingwen.

Technical consultants: Huang Chongke, Chen Keqiang, Qian Dadu, Gao Zhenjia, Tian Yuying.

Special thanks shall be given to: Senior Prof. Huang Chongke for his long-term and high-quality guidance and help.

The authors also feel grateful for the strong support by: Prof. Wu Lun at Peking University, Prof. Dang An’rong at Tsinghua University, Prof. Wang Donghua at National Geomatics Center of China, Mr. Hu Jianguo at Furong Science and Technology Co., Ltd., Mr. Xu Haibo at Beijing Shunhe Co., Ltd., and Prof. Xiao Keyan and Prof. Zhang Yongbo at Chinese Academy of Geological Sciences.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有