卢善龙 您所在的位置:网站首页 地球遥感所王蕾 卢善龙

卢善龙

2024-06-03 17:02| 来源: 网络整理| 查看: 265

1)学术论文

[1]  Lu, S., Wang, Y., Zhou, J., Hughes, A.C., Li, M., Du, C., Yang, X., Xiong, Y., Zi, F., Wang, W., Zheng, Z., Fang, C., Yu, S. 2022. Active water management brings possibility restoration to degraded lakes in dryland regions: A case study of Lop Nur, China. Scientific Reports, 12:18578. (SCI)

[2]    Lu, S., Jia, L., Jiang, Y., Wang, Z., Duan, H., Shen, M., Tian, Y., Lu, J. 2021. Progress and Prospect on Monitoring and Evaluation of United Nations SDG 6 (Clean Water and Sanitation) Target. Bulletin of Chinese Academy of Sciences, 36(8): 904-913.

[3]    Lu, S., Jin, J., Zhou, J., Li, X., Ju, J., Li, M., Chen, F., Zhu, L., Zhao, H., Yan, Q., Xie, C., Yao, X. 2021. Drainage basin reorganization and endorheic-exorheic transition triggered by climate change and human intervention. Global and Planetary Change 201: 103494. (SCI)

[4]    Lu, S., Chen, F., Zhou, J., Hughes, A.C., Ma, X., Gao, W. 2020. Cascading implications of a single climate change event for fragile ecosystems on the Qinghai-Tibetan Plateau. Ecosphere, 11(9): e03243. (SCI)

[5]    Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., and Ali Bai Hasan, M. 2019. Time series of Inland Surface Water Dataset in China (ISWDC) for 2000-2016 derived from MODIS archives. Earth Syst. Sci. Data, 11, 1-10, https://doi.org/10.5194/essd-11-1-2019. (SCI)

[6]    Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., and Ali Bai Hasan, M. 2018. Time series of Inland Surface Water Dataset in China (ISWDC) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.2616035.

[7]    Lu, S., Li, J., Zhang, L., Wei, Y., Baig, M.H.A., Zhai, Z., Meng, J., Li, X., Zhang, G. 2017. Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product, Remote Sensing Letters, 8(3): 224-233. (SCI)

[8]    Lu, S., Zhou, J., Dubee, F. 2016. New allies fight for China's environment. Science, 352 (6287), 781. (SCI)

[9]    Lu, S., Zhang, L., Guo, S., Fan, L., Meng, J., Wang, G. 2016. Forty years channel change on the Yongdinghe River, China: Patterns and causes. The International Journal of River Basin Management, 2016, 14(2): 183-193.

[10] Lu, S., Wu, B., Wei, Y., Yan, N., Wang, H., Guo, S. 2015. Quantifying the impacts of climate variability and human activities on the hydrological system of the Haihe River Basin, China. Environmental Earth Sciences, 73:1491-1503. (SCI)

[11] Lu, S., Ouyang, N., Wu, B., Wei, Y., Tesemma, Z. 2013. Lake water volume calculation with time series remote-sensing images. International Journal of Remote Sensing, 34(22): 7962-7973. (SCI)

[12] Lu, S., Wu, B., Wang, H., Ouyang, N., Guo, S. 2012. Hydro-ecological impact of water conservancy projects in the Haihe River Basin. Acta Oecologica, 44: 67-74. (SCI)

[13] Lu, S., Wu, B., Yan, N., Wang, H. 2011. Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 3(13): 428-434. (SCI)

[14] Lu, S., Wu, B., Li, F. 2011. Wetland pattern change in Hai Basin. Journal of Remote Sensing, 15(2): 349-371.

[15] Lu, S., Zou, L., Shen, X., Wu, W., Zhang, Z. 2010. Multi-spectral remote sensing image enhancement method based on PCA and IHS transformation. Journal of Zhejiang University-SCIENCE A, 16(6): 453-460. (SCI)

[16] Lu, S., Shen, X., Zou, L., et al. 2008. Remote sensing image enhancement method of the fault thermal information based on scale analysis: A case study of Jiangshan-Shaoxing fault between Jinhua and Quzhou of Zhejiang Province, China. Chinese Journal of Geophysics, 51(5): 1047-1057. (SCI)

[17] Lu, S., Shen, X., Zou, L., et al. 2008. An integrated classification method for Thematic Mapper imagery of plain and highland terrains. Journal of Zhejiang University SCIENCE A, 9(6): 858-866. (SCI)

[18] Lu, S., Shen, X., Zou, L. 2006. Land cover change in Ningbo and its surrounding area of Zhejiang Province, 1987-2000. Journal of Zhejiang University SCIENCE A, 7(4): 633-640. (SCI)

[19] Fang, C., Lu, S., Li, M., Wang, Y., Li, X., Tang, H., Ikhumhen, H.O. 2023. Lake water storage estimation method based on similar characteristics of above-water and underwater topography. https://doi.org/10.1016/j.jhydrol.2023.129146

[20] Li, M., Lu, S., Du, C., Wang, Y., Fang, C., Li, X., Tang, H., Ali Baig, M.H., Ikhumhen, O. 2022. Time-series surface water reconstruction method (TSWR) based on spatial distance relationship of multi-stage water boundaries. International Journal of Digital Earth, 15(1): 2335–2354. (SCI)

[21] Tang, H., Lu, S., Baig, M.H.A., Li, M., Fang, C., Wang, Y. 2022. Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water, 14: 1454. (SCI)

[22] Wang, Y., Lu, S., Zi, F., Tang, H., Li, M., Li, X., Fang, C., Ikhumhen, H.O. 2022. Artificial and Natural Water Bodies Change in China, 2000–2020. Water, 14: 1756. (SCI)

[23] Chen, Y., Lu, S., Zhou, J., Ali Baig, M.H., Chen, F., Tang, H., Zhang, Y., Yang, X., Ge, L. 2021. Hydrological ecosystem changes and impacts after the Zonag Lake outburst in Hoh Xil of Tibetan Plateau. Journal of Asian Earth Sciences: X 6: 100064.

[24] Zhai, Z., Lu, S., Wang, P., Tang, H., Liu, D., Han, Q., Guo, J., Liu, X., Wei, T. 2021. Ocean Chlorophyll-a retrieval using GF1-WFV data-a case study of the central Bohai Sea. IOP Conference Series: Earth Environmental Science, 626: 012021.

[25] Tang, H., Lu, S., Cheng, Y., Ge, L., Zhang, J. 2019. Analysis of dynamic changes and influence factors of Lake Balkhash in the last twenty years. Journal of Groundwater Science and Engineering, 7(3): 214-223.

[26] Ikhumhen, H.O., Li, T., Lu, S., Matomela, N. 2020. Assessment of a novel data driven habitat suitability ranking approach for Larus relictus specie using remote sensing and GIS. Ecological Modelling, 432: 109221. (SCI)

[27] Ikhumhen, H.O., Li, T., Lu, S., Matomela, N. 2020. Larus relictus HABITAT HIERARCHICAL EVALUATION BASED ON A DATA DRIVEN APPROACH. Environmental Engineering and Management Journal, 19(12): 2217-2229. (SCI)

[28] Du, H, Xue, X., Wang, T., Lu, S., Liao, J., Li, S., Fan, Y., Liu, X. 2022. Modeling dust emission in alpine regions with low air temperature and low air pressure – A case study on the Qinghai-Tibetan Plateau (QTP). Geoderma, 422: 115930. (SCI)

[29] Zhao, G., Yao, P., Fu, L., Zhang, Z., Lu, S., Long, T. 2022. A Deep Learning Method Based on Two-Stage CNN Framework for Recognition of Chinese Reservoirs with Sentinel-2 Images. Water, 14: 3755. (SCI)

[30] Zhang, S., Ma, Y., Chen, F., Liu, J., Chen, F., Lu, S., Jiang, L., Li, D. 2020. A new method for supporting interpretation of paleochannels in a large scale — Detrended Digital Elevation Model Interpretation. Geomorphology, 369: 107374. (SCI)

[31] Zhang, Q., Jin, J., Zhu, L., Lu, S. 2018. Modeling of water surface temperature of three lakes on the Tibetan Plateau using a physically based lake model. Atmosphere-Ocean, doi:10.1080/07055900.2018.1474085. (SCI)

[32] Li J., Guo, Y., Wang, Y., Lu, S., Chen, X. 2018. Drought Propagation Patterns under Naturalized Condition Using Daily Hydrometeorological Data. Advances in Meteorology, https://doi.org/10.1155/2018/2469156. (SCI)

[33] Zhang, L., Lu, D., Li, Q., Lu, S. 2018. Impacts of socioeconomic factors on cropland transition and its adaptation in Beijing, China. Environmental Earth Sciences, 77: 575. (SCI)

[34] Zhang, L., Li, X., Lu, S., Jia, K. 2016. Multi-scale object-based measurement of arid plant community structure. International Journal of Remote Sensing, 37(10): 2168-2179. (SCI)

[35] Zhu, W., Wu, B., Lu, S. 2014. An improved empirical method for large spatial scale surface soil heat flux estimations. Earth and Environmental Science, 17: 1-6. (SCI)

[36] Baig, M.H.A., Zhang, L., Wang, S., Jiang, G., Lu, S., Tong, Q. 2013. Comparison of MNDWI and DFI for water mapping in flooding season. IEEE IGARSS, 2876-2879.

[37] Xing, Q., Wu, B., Zhu, W., Lu, S. 2013. The improved ET calculation in winter by introducing radar-based aerodynamic roughness information into ETWatch System. IEEE IGARSS, 1824-1826.

[38] Wu, W., Zou, L., Shen, X., Lu, S., et al. 2012. Thermal anomalies associated with faults: a case study of the Jinhua–Quzhou basin of Zhejiang Province, China. International Journal of Remote Sensing, 33(6): 1850-1867. (SCI)

[39] Wu, W., Zou, L., Shen, X., Lu, S., et al. 2012. Thermal infrared remote-sensing detection of thermal information associated with faults: A case study in Western Sichuan Basin, China. Journal of Asian Earth Sciences, 43: 110-117. (SCI)

[40] Zhang, X., Wu, B., Li, X., Lu, S. 2012. Soil erosion risk and its spatial pattern in upstream area of Guanting reservoir. Environmental Earth Sciences, 65(1): 221-229. (SCI)

[41] Ouyang, N., Lu, S., Zhu, J., Wu, B., Wang, H. 2011. Wetland Restoration Suitability Evaluation at the Watershed Scale - A Case Study in Upstream of the Yongdinghe River. Procedia Environmental Sciences, 10: 1926-1932.

[42] Wu, B., Lu, S. 2011. Watershed remote sensing: methodology and a paradigm in Hai Basin. Journal of Remote Sensing, 15(2): 201-223.

[43] Wang, H., Wu, B., Lu, S., Li, J., Ouyang, N. 2011. Water resources estimation model based on remote sensing evapotranspiration. ISWREP, 2: 936-939.

[44] Wu B., Xiong, J., Lu, S. 2010. Discussion on Remote Sensed ET validation and Land-use Accuracy Assessment. HAIHE River Basin Research and Planning Approach-Proceedings of 2009 International Symposium of HAIHE Basin Integrated Water and Environment Management. 978-0-9807687-1-8: 336-342.

[45] Zhang, G., Zou, L., Shen, X., Lu, S., et al. 2009. Remote sensing detection of heavy oil through spectral enhancement techniques in the western slope zone of Songliao Basin, China. AAPG Bulletin, 93(1): 31-49. (SCI)

[46] Li, R., Shi, J., Zhao, T., Wang, T., Lu, S. 2020. Soil moisture estimation based on Landsat-8 and Modis in the upstream of Luan River Basin China. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM , pp.4922-4925.

[47] Zhang, G., Shen, X., Zou, L., Li, C., Wang, Y., Lu, S. 2007. Detection of hydrocarbon bearing sand through remote sensing techniques in the western slope zone of Songliao basin, China. International Journal of Remote Sensing, 28(8): 1819-1833. (SCI)

[48] Wang, L., Liu, H., Zhong, X., Zhou, J., Zhu, L., Yao, T., Xie, C., Ju, J., Chen, D., Yang, K., Zhao, L., Lu, S., et al. 2022. Domino effect of a natural cascade alpine lake system on the Third Pole, PNAS Nexus, 1: 1–9. (SCI)

[49] Guo, H., Liang, D., Sun, Z., Chen, F., Wang, X., Li, J., Bian, J., Wei, Y., Huang, L., Chen, Y., Peng, D., Li, X., Lu, S., Liu, J., Shirazi, Z. 2022. Measuring and evaluating SDG indicators with Big Earth Data. Science Bulletin, 67(17): 1792-1801.

[50] 卢善龙, 贾立, 蒋云钟, 王宗明, 段洪涛, 沈明, 田雨, 卢静. 2021. 联合国可持续发展目标 6(清洁饮水与卫生设施)监测评估:进展与展望. 中国科学院院刊, 36(8):904-913.

[51] 卢善龙, 陈甫, 邱玉宝. 2018. 三江源国家公园核心区卓乃湖沙化严重. 中国科学院专报信息, 135. 中办国办采纳.

[52] 卢善龙, 金继明, 贾立等. 2017. 基于MODIS MOD09Q1的青海、西藏湖泊水面数据集(2000~2012). 中国科学数据, 2(2). DOI: 10.11922/csdata.170.2016.0113.

[53] 卢善龙, 肖高怀, 贾立等. 2016. 2000~2012 年青藏高原湖泊水面时空过程数据集遥感提取. 国土资源遥感. 28(3): 181-187.

[54] 卢善龙, 吴炳方, 李发鹏等. 2010. 河川径流遥感监测研究进展. 地球科学进展, 25(8): 820-826.

[55] 卢善龙, 沈晓华, 邹乐君等. 2009. 用于地表温度场与断裂构造关系分析的分段均值法——以江山-绍兴断裂金衢段为例. 地质学报, 83(2): 1-8.

[56] 卢善龙, 沈晓华, 邹乐君等. 2008. 基于尺度分析的断层热信息遥感图像增强方法—以江山-绍兴断裂金衢段为例. 地球物理学报, 51(5): 1484-1493.

[57] 牛振国, 卢善龙, 朱亮. 2017. 白洋淀流域地表水和湿地减少严重. 中国科学院专报信息, 112. 中办国办采纳.

[58] 王 辉, 卢善龙, 丁俊, 邱玉宝, 唐海龙, 闫强. 2020. 气候变化对南极冰面湖的影响研究—以埃默里和拉森A冰架为例. 极地研究, 32(3): 322-335.

[59] 马小奇, 卢善龙, 马津等. 2019. 基于地形参数的湖泊水储量估算方法——以青藏高原纳要错为例. 国土资源遥感. 31(4), 167-173.

[60] 翟召坤, 卢善龙, 暴柱等, 2018. 基于GF-1卫星WFV数据的潘家口水库水质参数遥感估算模型研究. 中国水利水电科学研究院学报, 16(4): 297-306.

[61] 马津, 卢善龙, 齐建国, 翟召坤. 2019. 水文资料缺乏区河流流量遥感估算模型研究与应用. 测绘科学, 44(5): 184-190.

[62] 翟召坤, 卢善龙, 王萍等. 2017. 基于NSIDC海冰产品的FY北极海冰数据集优化. 地球信息科学, 19(2): 143-151.

[63] 王浩, 卢善龙, 吴炳方, 李晓松. 2013. 不透水面提取及应用研究进展. 地球科学进展, 28(3): 327-336

[64] 欧阳宁雷, 卢善龙, 吴炳方, 朱建军, 王浩. 2012. 流域尺度湿地恢复及可行性评价——以白洋淀流域为例. 湿地科学. 10(2): 200-205.

[65] 王京, 卢善龙, 吴炳方等. 2010. 近40年白洋淀湿地土地区覆被变化分析. 地球信息科学学报, 12(2): 292-299.

[66] 陈喜芬, 吴文渊, 卢善龙, 徐俊锋, 张登荣, 胡潭高. 2021. 基于Keyhole和Landsat MSS融合影像的土地利用变化监测研究——以杭州湾南岸为例. 北京师范大学学报(自然科学版), 57(06): 845-853.

[67] 孙玉燕, 张磊, 卢善龙, 刘红超. 2020. 基于动态NDSI阈值的每日积雪监测方法. 地球信息科学学报, 22(2): 298-307.

[68] 肖高怀, 侯淑涛, 卢善龙等. 2015. 基于Saxton 模型的土壤水分特征栅格化计算平台研究. 东北农业大学学报. 46(5): 68-74.

[69] 刘梅, 李发鹏, 卢善龙, 乔玉霜, 刘焕焕. 2011. 流域系统重金属污染研究进展. 安徽农业科学, 39(25): 15622-15626.

[70] 吴炳方, 熊隽, 卢善龙, 闫娜娜. 2009. 遥感蒸散和土地利用的精度验证问题. 2009年GEF海河流域水资源与水环境综合管理项目国际研讨会, 2009-12-01, 604-613.

[71] 王立辉,于顺利,周晋峰,卢善龙. 2021. 罗布泊及周边地区植物区系和植被特征兼论植被的恢复与保护.绿色科技, 23(18): 1-5.

[72] 王浩, 吴炳方, 李晓松, 卢善龙. 2011. 流域尺度的不透水面遥感提取. 遥感学报, 15(2): 288-400.

[73] 武文波, 姬翠翠, 李晓松, 卢善龙等. 2010. 影响土壤水蚀的环境因子分析. 中国水土保持, 5: 36-38.

[74] 吴文渊, 沈晓华, 邹乐君, 卢善龙等. 2008. 基于Landsat ETM+影像的水体信息综合提取方法. 科技通报, 24(2): 252-259.

[75] 何宇兵, 邹乐君, 沈晓华, 卢善龙. 2007. 基于MapObjects和ArcSDE C-API的地籍数据入库方法. 计算机应用, 27(1): 186-188.

[76] 罗海静, 资锋, 陈玲, 张微, 卢善龙. 2015. 高分一号卫星在国土资源领域的应用及前景. 卫星应用, 3: 41-43.

[77] 吴炳方, 周月敏, 闫娜娜, 曾源, 熊隽, 李晓松, 卢善龙, 张磊. 2009. 区域生态遥感的发展与未来. 遥感学报, 13(s1): 138-144.

2)专著(参与编写)

[1]    《地球大数据支撑可持续发展目标报告(2021):中国篇》,科学出版社,2022

[2]    《地球大数据支撑可持续发展目标报告(2021):一带一路篇》,科学出版社,2022

[3]    《Measuring Progress Environment and the SDGs》,United Nations Environment Programme, 2021.

[4]    《面向未来的科技:2021重大科学问题、工程技术难题及产业技术问题解读》,中国科学技术出版社,2021.

[5]    《地球大数据支撑可持续发展目标报告》,科学出版社,2021.

[6]    《地球大数据支撑可持续发展目标报告》,科学出版社,2019.

[7]    《流域下垫面变化及其对洪水径流过程影响分析方法及应用》, 中国水利水电出版社, 2017.

[8]    《三北防护林工程生态环境效应遥感监测与评估研究》, 科学出版社, 2016.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有