新型冠状病毒肺炎对儿童神经系统的影响 您所在的位置:网站首页 哪个足球星得了新型冠状病毒 新型冠状病毒肺炎对儿童神经系统的影响

新型冠状病毒肺炎对儿童神经系统的影响

2024-07-16 14:34| 来源: 网络整理| 查看: 265

Zhongguo Dang Dai Er Ke Za Zhi. 2021 May 15; 23(5): 530–535. Chinese. doi: 10.7499/j.issn.1008-8830.2012115PMCID: PMC8140346PMID: 34020746

Language: Chinese | English

新型冠状病毒肺炎对儿童神经系统的影响Influence of coronavirus disease 2019 on the nervous system of childrenReviewed by 姜 心怡*姜 心怡

1 温州医科大学附属第二医院育英儿童医院新生儿科, 浙江温州 325000, Department of Neonatology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China

Find articles by 姜 心怡Reviewed by 姜 心怡*姜 心怡

1 温州医科大学附属第二医院育英儿童医院新生儿科, 浙江温州 325000, Department of Neonatology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China

Find articles by 姜 心怡Guest Editor (s): 周 文浩*,*Author information Article notes Copyright and License information PMC Disclaimer周 文浩: nc.ude.naduf@oahnewuohz 周文浩, 男, 主任医师。Email: nc.ude.naduf@oahnewuohzReceived 2020 Dec 20; Accepted 2021 Jan 22.Copyright 版权所有©《中国当代儿科杂志》编辑部2021Copyright ©2021 Contemporary Chinese journal pediatrics. All rights reserved.Abstract

目前新型冠状病毒肺炎已经构成世界范围的大流行,可发生于儿童在内的任何年龄段。儿童新型冠状病毒肺炎可出现多个系统的临床症状,其中神经系统症状的报道不断增加,了解儿童新型冠状病毒肺炎相关的神经系统损伤显得尤为重要。该文对儿童新型冠状病毒肺炎神经系统损伤的机制及神经系统损伤的类型作一综述。

Keywords: 新型冠状病毒肺炎, 神经系统, 儿童Abstract

Coronavirus disease 2019 (COVID-19) has become a worldwide pandemic and can occur at any age, including children. Children with COVID-19 can develop the clinical symptoms of multiple systems, among which symptoms of the nervous system have been reported increasingly, and thus it is particularly important to understand COVID-19-associated neurological damage in children. This article reviews the mechanisms and types of COVID-19-associated neurological damage in children.

Keywords: Coronavirus disease 2019, Nervous system, Child

根据世界卫生组织的数据,截至2020年12月19日,全球有72 851 747例新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)确诊病例,1 643 339例死亡[1]。COVID-19可发生于任何年龄段,儿童最常见症状是发热、咳嗽,其他症状包括疲劳、肌痛、嗅觉减退、头痛头晕、恶心呕吐、腹痛腹泻、癫痫发作等,症状大多在1周内消失[2-3]。与成人相比,儿童COVID-19发病率较低,严重程度较低[4]。虽然COVID-19以呼吸系统症状为主,但是逐渐发现多个系统都可出现感染症状,其中约有21%~36%患者出现神经系统症状[5-6]。一项Meta分析显示儿童COVID-19出现头痛、肌痛等非特异性神经系统症状占16.7%,癫痫发作、脑病等特异性神经系统症状占1%[7]。值得注意的是,部分患儿以神经系统症状为首发症状[8-10]。本文就儿童COVID-19神经系统损伤的机制及神经系统损伤的类型作一综述。

1. 神经系统损伤的机制

病毒感染过程中,机体出现缺氧状态、炎症反应及高凝状态,可能造成神经系统损伤,并且各种机制之间具有协同作用。

1.1. 神经系统感染

COVID-19存在直接侵袭神经系统的可能性。嗅上皮存在病毒感染所需的两种蛋白质,即血管紧张素转化酶2(angiotensin-converting enzyme 2, ACE2)和跨膜丝氨酸蛋白酶2(transmembrane serine protease 2, TMPRSS2)[11]。ACE2是冠状病毒的主要受体,TMPRSS2具有介导冠状病毒刺突蛋白(S蛋白)水解的作用[12]。Netland等[13]发现人ACE2转基因小鼠感染非典型肺炎病毒后,病毒通过嗅上皮,以跨神经元的方式经过嗅球,沿轴突运输到大脑某些区域,造成大量神经元死亡。并且小鼠预后与转基因拷贝数和人ACE2 mRNA水平相关。

嗅上皮含有神经细胞和非神经细胞,ACE2在非神经细胞高表达,TMPRSS2在神经细胞和非神经细胞均可表达,并且高于ACE2的表达[14-15]。嗅上皮的嗅觉神经元是嗅上皮唯一与大脑相连的神经元。据推测,新型冠状病毒首先侵入高表达ACE2的嗅上皮非神经细胞,然后运输到低表达ACE2的成熟嗅觉神经元,最后沿轴突运输到大脑[11]。由于ACE2是否存在于人脑实质中仍未知[12],所以这可能是一种ACE2非依赖性的病毒轴突运输机制。

1.2. 细胞因子风暴

细胞因子风暴是指机体感染病原体后多种细胞因子,如肿瘤坏死因子-α(tumour necrosis factor-α, TNF-α)、白介素(interleukin, IL)-1、IL-6、IL-8、IL-12、干扰素(interferon, IFN)-α、IFN-β、IFN-γ、单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)等迅速大量产生,是引起急性呼吸窘迫综合征和多脏器功能衰竭的重要原因,可预测COVID-19患者的严重程度[16]。细胞因子具有神经毒性,会造成神经细胞损伤[17]。病毒感染含ACE2受体的内皮细胞或通过细胞因子驱动免疫反应都可能破坏血脑屏障的完整性[18-19]。病毒通过受损的血脑屏障进入中枢神经系统,可导致脑膜炎或脑炎。

1.3. 高凝状态

严重COVID-19患者可出现脓毒症性凝血病,表现为D-二聚体和纤维蛋白原升高。脓毒症性凝血病是弥散性血管内凝血的前驱状态,与感染诱导的全身炎症反应有关,伴有血管内皮功能障碍和微血栓形成[20]。有报道显示COVID-19患者出现呼吸衰竭后肺顺应性相对保持不变,同时具有较高的肺泡-动脉氧分压,尸检报告显示肺弥漫性微血栓,说明呼吸衰竭的原因是血管闭塞,而不是以肺顺应性降低为特点的急性呼吸窘迫综合征[21]。血栓形成不仅影响呼吸系统,还增加了脑梗死的风险,出现年轻患者脑梗死发病率增高的现象[22]。此外,炎症反应与高凝状态可以相互促进,相互影响。全身炎症反应通过组织因子介导凝血酶的生成,抑制内源性纤维蛋白溶解来促进凝血的发生。同时,激活的凝血蛋白酶通过影响炎症细胞和内皮细胞上的特定细胞受体,从而调节炎症反应[23]。

1.4. 缺氧

严重COVID-19引起缺氧,通过多种继发的病理生理变化影响大脑,从而造成神经系统的损伤[24]。缺氧不仅介导氧化应激反应,造成神经元和星形胶质细胞坏死、凋亡,还影响脑细胞能量代谢障碍,造成代谢性酸中毒导致脑血管痉挛和通透性增加,导致间质性脑水肿和颅内压增高[25]。

2. 神经系统损伤的类型

儿童与成人COVID-19神经系统损伤特征存在差异[26]。尽管儿童COVID-19神经系统损伤病例报道不多,但神经系统症状出现较早并具有多样性,值得引起人们的关注。

2.1. 嗅觉、味觉减退

目前认为,不伴鼻塞、流涕的嗅觉、味觉减退是COVID-19的早期症状甚至首发症状[27-28]。嗅觉减退的主要原因是鼻咽黏膜的感染和/或嗅觉相关神经元的损伤[29],因为病毒可通过结合嗅上皮ACE2受体进入中枢神经系统[11]。味觉减退可能与新型冠状病毒与唾液酸中的受体结合有关,影响味觉形成,或是由于大脑对味觉和嗅觉的感受相互关联[29]。嗅觉减退的患者IL-6的水平升高,因为IL-6参与嗅觉相关的信号通路,所以推测IL-6升高降低了嗅神经细胞的活性[30]。嗅觉、味觉功能短时间内恢复伴IL-6水平降低[29],与上述推测相符。研究显示,41%的COVID-19患者出现嗅觉和/或味觉减退[28],但在儿童中该比例只有5.2%[31]。虽然以主观症状作为婴幼儿的评估可能导致数据不够准确,把嗅觉、味觉减退作为早期症状在儿童中进行筛查也有一定的局限性,但仍值得引起家长和临床医生的注意。目前未在儿童人群中开展该方面的研究。英国报道了3例以嗅觉、味觉功能障碍为主要症状的青少年病例,不伴有其他症状或伴轻微的全身症状,预后良好[9]。由于嗅上皮可能是病毒入侵神经系统的首要靶点,所以对出现嗅觉、味觉障碍的轻度COVID-19患儿,应及时检查是否存在其他神经系统损伤。

2.2. 癫痫发作

癫痫发作是儿童COVID-19常见的特异性神经系统症状[7]。病毒感染介导细胞因子大量释放,其中IL-1β使星形胶质细胞谷氨酸盐释放增加、重吸收减少,导致神经元过度兴奋[32],TNF-α、IL-6提高血脑屏障的通透性,使中枢神经系统的渗透失衡[33]。同时神经细胞突触后膜离子型谷氨酸受体中N-甲基-D-天冬氨酸受体2B亚基数量增加,诱导癫痫发作[34]。García-Howard等[35]报道1名3月龄COVID-19患儿,既往无癫痫发作史,此次以反复癫痫发作为主要症状,不伴有发热,其他病毒检测均为阴性。经全外显子测序发现,该婴儿与其母亲均携带PRRT2基因缺失变异体,与良性家族性婴儿惊厥有关。所以推测,COVID-19可能诱发遗传性癫痫综合征发作。此外,癫痫发作可以是COVID-19患儿的唯一临床表现[8],也可以继发于COVID-19相关脑炎、脑膜炎、儿童多系统炎症综合征[36-38]。长期、反复或严重的癫痫发作会造成进一步的神经系统损伤,使用抗癫痫药可以控制COVID-19患儿的癫痫发作,并且具有良好的短期预后[7]。

2.3. 热性惊厥

热性惊厥(febrile seizure, FS)是指发生在生后3个月至5岁,发热初期或体温快速上升期出现的惊厥,排除中枢神经系统感染及引发惊厥发作的任何其他急性病因,既往也没有无热惊厥史。除遗传因素外,病毒和细菌感染是其重要的发病因素,发病机制与细胞因子有关[12]。发热会增加脑内炎症介质的释放,尤其是IL-1β等细胞因子[39]。Dugue等[40]报道一名有FS家族史的COVID-19患儿,出现FS伴鼻病毒和肠道病毒感染。Tan等[41]报道一名COVID-19患儿,出现FS伴支原体感染。研究显示,9%的FS患儿存在冠状病毒感染[42],并且常存在2种及以上的病毒合并感染[42-43]。此外,研究显示,40%的COVID-19患儿存在其他病毒的合并感染[44]。所以,对COVID-19伴FS患儿,应进行其他病原体的检测。

2.4. 吉兰-巴雷综合征

吉兰-巴雷综合征(Guillain-Barré syndrome, GBS)是一种自身免疫介导的周围神经病。GBS的确切病因未明,但50%~70%的病例在起病1~2周前有呼吸道或胃肠道感染,或是由于其他免疫刺激导致周围神经及脊神经根发生异常的自身免疫反应。某些病毒,如巨细胞病毒和水痘-带状疱疹病毒,可能通过直接感染神经而导致周围神经病变[45]。但37例成人和2例儿童COVID-19伴GBS病例中,均未在脑脊液中检测到该病毒[46-48]。新型冠状病毒的S蛋白介导病毒与细胞表面结合,S蛋白不仅结合ACE2受体[11],还能结合细胞表面含唾液酸的糖蛋白和神经节苷脂[49]。分子模拟是目前认为最可能导致GBS发病的最主要机制之一。因此,S蛋白结合的细胞表面神经节苷脂与周围神经节苷脂可能发生交叉反应[48]。目前,只报道了2例儿童COVID-19伴GBS病例,均预后良好,未见少数严重成人GBS患者呼吸衰竭的症状[46-47]。COVID-19伴GBS罕见,羟氯喹可通过抑制S蛋白与神经节苷脂结合从而达到治疗目的[49]。

2.5. 病毒性脑炎、病毒性脑膜炎

冠状病毒感染导致病毒性脑炎或脑膜炎的报道较少见[12]。目前,成人和儿童均有COVID-19伴病毒性脑炎病例的报道,且已在脑脊液中检测到病毒[50-51]。主要机制包括病毒侵袭中枢神经系统,和病毒感染继发的炎症反应。研究显示,12%儿童急性脑炎患儿存在冠状病毒感染,说明冠状病毒是中枢神经系统感染的常见病原体,并且患儿脑脊液中IL-6、IL-8和MCP-1明显增多。IL-6提高血脑屏障的通透性,IL-8激活中性粒细胞,与血脑屏障的破坏有关[52]。MCP-1是一种趋化因子,对单核细胞有趋化作用,使其穿过血脑屏障,可能导致病毒感染的细胞进入中枢神经系统[53-54]。但这种细胞因子增多的现象是非特异性的,登革热病毒脑炎和日本脑炎病毒脑炎均有类似的现象[54]。COVID-19伴病毒性脑炎或脑膜炎主要症状包括头痛、呕吐、乏力,病毒性脑炎还可出现偏瘫、偏身感觉障碍、癫痫发作等症状,病毒性脑膜炎可出现脑膜刺激征[37-38, 50, 55],这些症状对疾病的早期发现具有重要意义。

2.6. 局灶性脑动脉病

儿童局灶性脑动脉病(focal cerebral arteriopathy, FCA)是指大脑动脉单侧狭窄引起的急性病[56-57],分为FCA-夹层型和FCA-炎症型。带状疱疹病毒感染是FCA的常见病因[58],其他病原体感染较少见。研究显示,感染是儿童脑梗死的危险因素,脑梗死前1周的感染使脑梗死风险增加6.3倍[59]。感染可通过多种机制引起脑梗死。急性感染时,促凝血途径被激活而抗凝血途径被抑制[60]。此外,儿童急性感染与感染后3个月颈动脉内膜中层增厚有关[61]。

FCA是儿童COVID-19相关急性脑卒中的病因之一。Gulko等[36]发现一名患儿出现失语和肢体运动障碍,经血管壁成像(vascular wall imaging, VWI)检查,诊断为FCA-炎症型。Mirzaee等[10]发现一名12岁患儿出现癫痫全面性发作、右侧偏瘫和构音障碍,影像学表现为单侧局灶性的血管病变,未行VWI检查,诊断为FCA。VWI检查有助于FCA的特异性诊断及分型[56]。治疗上,糖皮质激素可改善儿童FCA的预后[62]。

2.7. 儿童多系统炎症综合征

2020年4月以来,欧美国家相继报道与COVID-19相关的儿童重症病例,与川崎病和中毒性休克症状相似。美国疾病预防控制中心将其命名为儿童多系统炎症综合征(multisystem inflammatory syndrome in children, MIS-C)。Meta分析显示,约25%~50%的MIS-C患儿存在神经系统症状[63]。Abdel-Mannan等[64]发现4名MIS-C患儿新发神经系统症状,表现为头痛、小脑性共济失调、构音障碍、吞咽困难、肌无力和反射减退,影像学检查均可见胼胝体异常。MIS-C患儿病情严重,除上述神经系统症状外,还可出现意识障碍、继发癫痫发作,以及脑出血、脑梗死、丘脑病变等儿童少见的神经系统症状,甚至死亡[65-68]。

目前认为COVID-19伴MIS-C是一种迟发的免疫反应,与病毒感染后全身炎症反应相关[69-70]。研究显示,与未患MIS-C的COVID-19相比,MIS-C部分免疫指标存在显著差异,包括趋化因子和细胞因子的水平、T淋巴细胞各亚群的比例和NK细胞的数量[71]。MIS-C患儿CX3CR1+CD8+T淋巴细胞的激活和增殖显著升高,且与D-二聚体的水平呈正相关[70]。CX3CR1是趋化因子CX3CL1的受体,可介导CD8+T淋巴细胞与表达CX3CL1的血管内皮细胞和平滑肌细胞结合[72]。与未出现血栓的成人COVID-19患者相比,疑似或已有血栓形成的成人患者CX3CR1+CD8+T淋巴细胞激活的比例较高[70]。这可能预示MIS-C患儿血栓形成风险较高。

此外,除IL-6、IL-10、TNF-α升高外,De Paulis等[65]发现一名MIS-C患儿脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)明显降低。BDNF是一种具有神经营养作用的蛋白质,COVID-19可能通过ACE2/Mas/BDNF信号通路,抑制BDNF的合成和释放[73],BDNF的减少可能会对儿童的神经发育及认知功能有长期的影响[65, 74]。

3. 结语

目前,全球COVID-19的疫情尚未完全控制,COVID-19病例仍在不断增加。该病的发病机制仍需进一步研究。目前报道的儿童COVID-19神经系统损伤的病例较少,相关研究较少。实际的病例数应该是大于目前已知的,因为过去人们大部分关注呼吸系统的症状,对神经系统的描述较少。在已报道的病例中,大部分儿童神经系统损伤的短期预后较好,但是否存在后遗症仍是未知的,并且年龄较小的儿童大脑仍处于发育阶段,因此对COVID-19患儿可能存在的神经系统表现细致观察,对COVID-19患儿的神经系统长期随访跟踪,并在此基础上进一步深入研究其神经损伤机制、探索干预的手段方法,显得尤为重要。

Biographies• 

姜心怡, 女, 硕士研究生

• 

Zhou W-H, Email: nc.ude.naduf@oahnewuohz

References1. World Health Organization. WHO coronavirus disease (COVID-19) dashboard[DB/OL]. [2020-12-19]. https://covid19.who.int/. 2. Choi SH, Kim HW, Kang JM, et al. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr. 2020;63(4):125–132. doi: 10.3345/cep.2020.00535. [Choi SH, Kim HW, Kang JM, et al. Epidemiology and clinical features of coronavirus disease 2019 in children[J]. Clin Exp Pediatr, 2020, 63(4): 125-132.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]3. Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. http://www.researchgate.net/publication/343189623_Multicentre_Italian_study_of_SARS-CoV-2_infection_in_children_and_adolescents_preliminary_data_as_at_10_April_2020/download. Euro Surveill. 2020;25(18):2000600. [Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020[J]. Euro Surveill, 2020, 25(18): 2000600.] [PMC free article] [PubMed] [Google Scholar]4. Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis. JAMA Pediatr. 2021;175(2):143–156. doi: 10.1001/jamapediatrics.2020.4573. [Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis[J]. JAMA Pediatr, 2021, 175(2): 143-156.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]5. Mao L, Jin HJ, Wang MD, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127. [Mao L, Jin HJ, Wang MD, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurol, 2020, 77(6): 683-690.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]6. Cagnazzo F, Arquizan C, Derraz I, et al. Neurological manifestations of patients infected with the SARS-CoV-2: a systematic review of the literature[J]. J Neurol, 2020. DOI: 10.1007/s00415-020-10285-9. Epub ahead of print.7. Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: a systematic review and meta-analysis[J]. J Trop Pediatr, 2020. DOI: 10.1093/tropej/fmaa070. Epub ahead of print.8. Bhatta S, Sayed A, Ranabhat B, et al. New-onset seizure as the only presentation in a child with COVID-19. http://www.researchgate.net/publication/342451844_New-Onset_Seizure_as_the_Only_Presentation_in_a_Child_With_COVID-19. Cureus. 2020;12(6):e8820. [Bhatta S, Sayed A, Ranabhat B, et al. New-onset seizure as the only presentation in a child with COVID-19[J]. Cureus, 2020, 12(6): e8820.] [PMC free article] [PubMed] [Google Scholar]9. Mak PQ, Chung KS, Wong JS, et al. Anosmia and ageusia: not an uncommon presentation of COVID-19 infection in children and adolescents. Pediatr Infect Dis J. 2020;39(8):e199–e200. doi: 10.1097/INF.0000000000002718. [Mak PQ, Chung KS, Wong JS, et al. Anosmia and ageusia: not an uncommon presentation of COVID-19 infection in children and adolescents[J]. Pediatr Infect Dis J, 2020, 39(8): e199-e200.] [PubMed] [CrossRef] [Google Scholar]10. Mirzaee SMM, Gonçalves FG, Mohammadifard M, et al. Focal cerebral arteriopathy in a COVID-19. Radiology. 2020;297(2):E274–E275. doi: 10.1148/radiol.2020202197. [Mirzaee SMM, Gonçalves FG, Mohammadifard M, et al. Focal cerebral arteriopathy in a COVID-19[J]. Radiology, 2020, 297(2): E274-E275.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Butowt R, Bilinska K. SARS-CoV-2:olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–1203. doi: 10.1021/acschemneuro.0c00172. [Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection[J]. ACS Chem Neurosci, 2020, 11(9): 1200-1203.] [PubMed] [CrossRef] [Google Scholar]12. Morgello S. Coronaviruses and the central nervous system. J Neurovirol. 2020;26(4):459–473. doi: 10.1007/s13365-020-00868-7. [Morgello S. Coronaviruses and the central nervous system[J]. J Neurovirol, 2020, 26(4): 459-473.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]13. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08. [Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J]. J Virol, 2008, 82(15): 7264-7275.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]14. Saraiva LR, Ibarra-Soria X, Khan M, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep. 2015;5:18178. doi: 10.1038/srep18178. [Saraiva LR, Ibarra-Soria X, Khan M, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq[J]. Sci Rep, 2015, 5: 18178.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. Kanageswaran N, Demond M, Nagel M, et al. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One. 2015;10(1):e0113170. doi: 10.1371/journal.pone.0113170. [Kanageswaran N, Demond M, Nagel M, et al. Deep sequencing of the murine olfactory receptor neuron transcriptome[J]. PLoS One, 2015, 10(1): e0113170.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Debuc B, Smadja DM. Is COVID-19 a new hematologic disease? Stem Cell Rev Rep. 2021;17(1):4–8. doi: 10.1007/s12015-020-09987-4. [Debuc B, Smadja DM. Is COVID-19 a new hematologic disease?[J]. Stem Cell Rev Rep, 2021, 17(1): 4-8.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Allan SM, Rothwell NJ. Cytokines and acute neurodegenera-tion. Nat Rev Neurosci. 2001;2(10):734–744. doi: 10.1038/35094583. [Allan SM, Rothwell NJ. Cytokines and acute neurodegenera-tion[J]. Nat Rev Neurosci, 2001, 2(10): 734-744.] [PubMed] [CrossRef] [Google Scholar]18. Aghagoli G, Gallo Marin B, Katchur NJ, et al. Neurological involvement in COVID-19 and potential mechanisms: a review[J]. Neurocrit Care, 2020. DOI: 10.1007/s12028-020-01049-4. Epub ahead of print.19. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570. [Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol, 2004, 203(2): 631-637.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. 2020;11(3):322–325. doi: 10.1007/s12975-020-00818-9. [Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke[J]. Transl Stroke Res, 2020, 11(3): 322-325.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020;18(7):1752–1755. doi: 10.1111/jth.14828. [Wang J, Hajizadeh N, Moore EE, et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series[J]. J Thromb Haemost, 2020, 18(7): 1752-1755.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]22. Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787. [Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young[J]. N Engl J Med, 2020, 382(20): e60.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]23. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38(2 Suppl):S26–S34. [Levi M, van der Poll T. Inflammation and coagulation[J]. Crit Care Med, 2010, 38(2 Suppl): S26-S34.] [PubMed] [Google Scholar]24. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19:a literature review. J Clin Neurosci. 2020;77:8–12. doi: 10.1016/j.jocn.2020.05.017. [Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: a literature review[J]. J Clin Neurosci, 2020, 77: 8-12.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. Fan HY, Tang XJ, Song YX, et al. Influence of COVID-19 on cerebrovascular disease and its possible mechanism. Neuropsychiatr Dis Treat. 2020;16:1359–1367. doi: 10.2147/NDT.S251173. [Fan HY, Tang XJ, Song YX, et al. Influence of COVID-19 on cerebrovascular disease and its possible mechanism[J]. Neuropsychiatr Dis Treat, 2020, 16: 1359-1367.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. Christy A. COVID-19:a review for the pediatric neurologist. J Child Neurol. 2020;35(13):934–939. doi: 10.1177/0883073820939387. [Christy A. COVID-19: a review for the pediatric neurologist[J]. J Child Neurol, 2020, 35(13): 934-939.] [PubMed] [CrossRef] [Google Scholar]27. Luethgen M, Eggeling J, Heyckendorf J, et al. Changes in taste and smell as an early marker for COVID-19. Int J Infect Dis. 2020;99:8–9. doi: 10.1016/j.ijid.2020.07.018. [Luethgen M, Eggeling J, Heyckendorf J, et al. Changes in taste and smell as an early marker for COVID-19[J]. Int J Infect Dis, 2020, 99: 8-9.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]28. Qiu CH, Cui C, Hautefort C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. Otolaryngol Head Neck Surg. 2020;163(4):714–721. doi: 10.1177/0194599820934376. [Qiu CH, Cui C, Hautefort C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study[J]. Otolaryngol Head Neck Surg, 2020, 163(4): 714-721.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6. ACS Chem Neurosci. 2020;11(17):2774–2781. doi: 10.1021/acschemneuro.0c00447. [Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6[J]. ACS Chem Neurosci, 2020, 11(17): 2774-2781.] [PubMed] [CrossRef] [Google Scholar]30. Henkin RI, Schmidt L, Velicu I. Interleukin 6 in hyposmia. JAMA Otolaryngol Head Neck Surg. 2013;139(7):728–734. doi: 10.1001/jamaoto.2013.3392. [Henkin RI, Schmidt L, Velicu I. Interleukin 6 in hyposmia[J]. JAMA Otolaryngol Head Neck Surg, 2013, 139(7): 728-734.] [PubMed] [CrossRef] [Google Scholar]31. Gaborieau L, Delestrain C, Bensaid P, et al. Epidemiology and clinical presentation of children hospitalized with SARS-CoV-2 infection in suburbs of Paris. J Clin Med. 2020;9(7):2227. doi: 10.3390/jcm9072227. [Gaborieau L, Delestrain C, Bensaid P, et al. Epidemiology and clinical presentation of children hospitalized with SARS-CoV-2 infection in suburbs of Paris[J]. J Clin Med, 2020, 9(7): 2227.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]32. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017;29(1):1–16. doi: 10.1017/neu.2016.47. [Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms[J]. Acta Neuropsychiatr, 2017, 29(1): 1-16.] [PubMed] [CrossRef] [Google Scholar]33. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation. 2018;15(1):144. doi: 10.1186/s12974-018-1192-7. [Rana A, Musto AE. The role of inflammation in the development of epilepsy[J]. J Neuroinflammation, 2018, 15(1): 144.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]34. Postnikova TY, Zubareva OE, Kovalenko AA, et al. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry (Mosc) 2017;82(3):282–290. doi: 10.1134/S0006297917030063. [Postnikova TY, Zubareva OE, Kovalenko AA, et al. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors[J]. Biochemistry (Mosc), 2017, 82(3): 282-290.] [PubMed] [CrossRef] [Google Scholar]35. García-Howard M, Herranz-Aguirre M, Moreno-Galarraga L, et al. Case report: benign infantile seizures temporally associated with COVID-19. Front Pediatr. 2020;8:507. doi: 10.3389/fped.2020.00507. [García-Howard M, Herranz-Aguirre M, Moreno-Galarraga L, et al. Case report: benign infantile seizures temporally associated with COVID-19[J]. Front Pediatr, 2020, 8: 507.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]36. Gulko E, Overby P, Ali S, et al. Vessel wall enhancement and focal cerebral arteriopathy in a pediatric patient with acute infarct and COVID-19 infection. AJNR Am J Neuroradiol. 2020;41(12):2348–2350. doi: 10.3174/ajnr.A6778. [Gulko E, Overby P, Ali S, et al. Vessel wall enhancement and focal cerebral arteriopathy in a pediatric patient with acute infarct and COVID-19 infection[J]. AJNR Am J Neuroradiol, 2020, 41(12): 2348-2350.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. Arango Ferreira C, Correa-Roda M. Acute meningoencephalitis as initial presentation of SARS-CoV-2 infection in pediatrics. Pediatr Infect Dis J. 2020;39(11):e386–e387. doi: 10.1097/INF.0000000000002885. [Arango Ferreira C, Correa-Roda M. Acute meningoencephalitis as initial presentation of SARS-CoV-2 infection in pediatrics[J]. Pediatr Infect Dis J, 2020, 39(11): e386-e387.] [PubMed] [CrossRef] [Google Scholar]38. McAbee GN, Brosgol Y, Pavlakis S, et al. Encephalitis associated with COVID-19 infection in an 11-year-old child. Pediatr Neurol. 2020;109:94. doi: 10.1016/j.pediatrneurol.2020.04.013. [McAbee GN, Brosgol Y, Pavlakis S, et al. Encephalitis associated with COVID-19 infection in an 11-year-old child[J]. Pediatr Neurol, 2020, 109: 94.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]39. McClelland S, Dubé CM, Yang J, et al. Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities. Neurosci Lett. 2011;497(3):155–162. doi: 10.1016/j.neulet.2011.02.032. [McClelland S, Dubé CM, Yang J, et al. Epileptogenesis after prolonged febrile seizures: mechanisms, biomarkers and therapeutic opportunities[J]. Neurosci Lett, 2011, 497(3): 155-162.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Dugue R, Cay-Martínez KC, Thakur KT, et al. Neurologic manifestations in an infant with COVID-19. Neurology. 2020;94(24):1100–1102. doi: 10.1212/WNL.0000000000009653. [Dugue R, Cay-Martínez KC, Thakur KT, et al. Neurologic manifestations in an infant with COVID-19[J]. Neurology, 2020, 94(24): 1100-1102.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]41. Tan YP, Tan BY, Pan J, et al. Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China. J Clin Virol. 2020;127:104353. doi: 10.1016/j.jcv.2020.104353. [Tan YP, Tan BY, Pan J, et al. Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China[J]. J Clin Virol, 2020, 127: 104353.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Francis JR, Richmond P, Robins C, et al. An observational study of febrile seizures: the importance of viral infection and immunization. BMC Pediatr. 2016;16(1):202. doi: 10.1186/s12887-016-0740-5. [Francis JR, Richmond P, Robins C, et al. An observational study of febrile seizures: the importance of viral infection and immunization[J]. BMC Pediatr, 2016, 16(1): 202.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]43. Carman KB, Calik M, Karal Y, et al. Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study) Hum Vaccin Immunother. 2019;15(2):496–502. doi: 10.1080/21645515.2018.1526588. [Carman KB, Calik M, Karal Y, et al. Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study)[J]. Hum Vaccin Immunother, 2019, 15(2): 496-502.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Xia W, Shao JB, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020;55(5):1169–1174. doi: 10.1002/ppul.24718. [Xia W, Shao JB, Guo Y, et al. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults[J]. Pediatr Pulmonol, 2020, 55(5): 1169-1174.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]45. Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol. 2004;61(11):1669–1673. doi: 10.1001/archneur.61.11.1669. [Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome[J]. Arch Neurol, 2004, 61(11): 1669-1673.] [PubMed] [CrossRef] [Google Scholar]46. Frank CHM, Almeida TVR, Marques EA, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection in a pediatric patient[J]. J Trop Pediatr, 2020. DOI: 10.1093/tropej/fmaa044. Epub ahead of print.47. Khalifa M, Zakaria F, Ragab Y, et al. Guillain-Barré syndrome associated with severe acute respiratory syndrome coronavirus 2 detection and coronavirus disease 2019 in a child. J Pediatric Infect Dis Soc. 2020;9(4):510–513. doi: 10.1093/jpids/piaa086. [Khalifa M, Zakaria F, Ragab Y, et al. Guillain-Barré syndrome associated with severe acute respiratory syndrome coronavirus 2 detection and coronavirus disease 2019 in a child[J]. J Pediatric Infect Dis Soc, 2020, 9(4): 510-513.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]48. Caress JB, Castoro RJ, Simmons Z, et al. COVID-19-associated Guillain-Barré syndrome: the early pandemic experience. Muscle Nerve. 2020;62(4):485–491. doi: 10.1002/mus.27024. [Caress JB, Castoro RJ, Simmons Z, et al. COVID-19-associated Guillain-Barré syndrome: the early pandemic experience[J]. Muscle Nerve, 2020, 62(4): 485-491.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Fantini J, Di Scala C, Chahinian H, et al. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55(5):105960. doi: 10.1016/j.ijantimicag.2020.105960. [Fantini J, Di Scala C, Chahinian H, et al. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection[J]. Int J Antimicrob Agents, 2020, 55(5): 105960.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Yousefi K, Poorbarat S, Abasi Z, et al. Viral meningitis associated with COVID-19 in a 9-year-old child: a case report. Pediatr Infect Dis J. 2021;40(2):e87–e98. doi: 10.1097/INF.0000000000002979. [Yousefi K, Poorbarat S, Abasi Z, et al. Viral meningitis associated with COVID-19 in a 9-year-old child: a case report[J]. Pediatr Infect Dis J, 2021, 40(2): e87-e98.] [PubMed] [CrossRef] [Google Scholar]51. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767–783. doi: 10.1016/S1474-4422(20)30221-0. [Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19[J]. Lancet Neurol, 2020, 19(9): 767-783.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]52. Winter PM, Dung NM, Loan HT, et al. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis. 2004;190(9):1618–1626. doi: 10.1086/423328. [Winter PM, Dung NM, Loan HT, et al. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis[J]. J Infect Dis, 2004, 190(9): 1618-1626.] [PubMed] [CrossRef] [Google Scholar]53. Li YY, Li HP, Fan RY, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163–169. doi: 10.1159/000453066. [Li YY, Li HP, Fan RY, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children[J]. Intervirology, 2016, 59(3): 163-169.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]54. Li HP, Li YY, Wen B, et al. Dengue virus and Japanese encephalitis virus infection of the central nervous system share similar profiles of cytokine accumulation in cerebrospinal fluid. http://pubmedcentralcanada.ca/pmcc/articles/PMC5573897/ Cent Eur J Immunol. 2017;42(2):218–222. [Li HP, Li YY, Wen B, et al. Dengue virus and Japanese encephalitis virus infection of the central nervous system share similar profiles of cytokine accumulation in cerebrospinal fluid[J]. Cent Eur J Immunol, 2017, 42(2): 218-222.] [PMC free article] [PubMed] [Google Scholar]55. Conto-Palomino NM, Cabrera-Bueno ML, Vargas-Ponce KG, et al. Encephalitis associated with COVID-19 in a 13-year-old girl: a case report. Medwave. 2020;20(7):e7984. doi: 10.5867/medwave.2020.07.7984. [Conto-Palomino NM, Cabrera-Bueno ML, Vargas-Ponce KG, et al. Encephalitis associated with COVID-19 in a 13-year-old girl: a case report[J]. Medwave, 2020, 20(7): e7984.] [PubMed] [CrossRef] [Google Scholar]56. Wintermark M, Hills NK, Deveber GA, et al. Clinical and imaging characteristics of arteriopathy subtypes in children with arterial ischemic stroke: results of the VIPS study. AJNR Am J Neuroradiol. 2017;38(11):2172–2179. doi: 10.3174/ajnr.A5376. [Wintermark M, Hills NK, Deveber GA, et al. Clinical and imaging characteristics of arteriopathy subtypes in children with arterial ischemic stroke: results of the VIPS study[J]. AJNR Am J Neuroradiol, 2017, 38(11): 2172-2179.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]57. Fullerton HJ, Stence N, Hills NK, et al. Focal cerebral arteriopathy of childhood: novel severity score and natural history. Stroke. 2018;49(11):2590–2596. doi: 10.1161/STROKEAHA.118.021556. [Fullerton HJ, Stence N, Hills NK, et al. Focal cerebral arteriopathy of childhood: novel severity score and natural history[J]. Stroke, 2018, 49(11): 2590-2596.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]58. Lanthier S, Armstrong D, Domi T, et al. Post-varicella arteriopathy of childhood: natural history of vascular stenosis. Neurology. 2005;64(4):660–663. doi: 10.1212/01.WNL.0000151851.66154.27. [Lanthier S, Armstrong D, Domi T, et al. Post-varicella arteriopathy of childhood: natural history of vascular stenosis[J]. Neurology, 2005, 64(4): 660-663.] [PubMed] [CrossRef] [Google Scholar]59. Woo D. Infection, vaccination, and childhood arterial ischemic stroke. Neurology. 2015;85(17):e134. doi: 10.1212/WNL.0000000000002115. [Woo D. Infection, vaccination, and childhood arterial ischemic stroke[J]. Neurology, 2015, 85(17): e134.] [PubMed] [CrossRef] [Google Scholar]60. Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. http://www.nature.com/articles/nrneurol.2010.163. Nat Rev Neurol. 2010;6(12):681–694. [Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke[J]. Nat Rev Neurol, 2010, 6(12): 681-694.] [PubMed] [Google Scholar]61. Liuba P, Persson J, Luoma J, et al. Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media. Eur Heart J. 2003;24(6):515–521. doi: 10.1016/S0195-668X(02)00750-9. [Liuba P, Persson J, Luoma J, et al. Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media[J]. Eur Heart J, 2003, 24(6): 515-521.] [PubMed] [CrossRef] [Google Scholar]62. Steinlin M, Bigi S, Stojanovski B, et al. Focal cerebral arteriopathy: do steroids improve outcome? Stroke. 2017;48(9):2375–2382. doi: 10.1161/STROKEAHA.117.016818. [Steinlin M, Bigi S, Stojanovski B, et al. Focal cerebral arteriopathy: do steroids improve outcome?[J]. Stroke, 2017, 48(9): 2375-2382.] [PubMed] [CrossRef] [Google Scholar]63. Abrams JY, Godfred-Cato SE, Oster ME, et al. Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2:a systematic review. J Pediatr. 2020;226:45–54.e1. doi: 10.1016/j.jpeds.2020.08.003. [Abrams JY, Godfred-Cato SE, Oster ME, et al. Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2: a systematic review[J]. J Pediatr, 2020, 226: 45-54. e1.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]64. Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children. http://www.researchgate.net/publication/342619113_Neurologic_and_Radiographic_Findings_Associated_With_COVID-19_Infection_in_Children. JAMA Neurol. 2020;77(11):1–6. [Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1-6.] [PMC free article] [PubMed] [Google Scholar]65. De Paulis M, Oliveira DBL, Vieira RP, et al. Multisystem inflammatory syndrome associated with COVID-19 with neurologic manifestations in a child: a brief report. Pediatr Infect Dis J. 2020;39(10):e321–e324. doi: 10.1097/INF.0000000000002834. [De Paulis M, Oliveira DBL, Vieira RP, et al. Multisystem inflammatory syndrome associated with COVID-19 with neurologic manifestations in a child: a brief report[J]. Pediatr Infect Dis J, 2020, 39(10): e321-e324.] [PubMed] [CrossRef] [Google Scholar]66. Schupper AJ, Yaeger KA, Morgenstern PF. Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19. Childs Nerv Syst. 2020;36(8):1579–1580. doi: 10.1007/s00381-020-04755-8. [Schupper AJ, Yaeger KA, Morgenstern PF. Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19[J]. Childs Nerv Syst, 2020, 36(8): 1579-1580.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]67. Saeed A, Shorafa E. Status epilepticus as a first presentation of COVID-19 infection in a 3 years old boy; Case report and review the literature. IDCases. 2020;22:e00942. doi: 10.1016/j.idcr.2020.e00942. [Saeed A, Shorafa E. Status epilepticus as a first presentation of COVID-19 infection in a 3 years old boy; Case report and review the literature[J]. IDCases, 2020, 22: e00942.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]68. Abel D, Shen MY, Abid Z, et al. Encephalopathy and bilateral thalamic lesions in a child with MIS-C associated with COVID-19. Neurology. 2020;95(16):745–748. doi: 10.1212/WNL.0000000000010652. [Abel D, Shen MY, Abid Z, et al. Encephalopathy and bilateral thalamic lesions in a child with MIS-C associated with COVID-19[J]. Neurology, 2020, 95(16): 745-748.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]69. Nakra NA, Blumberg DA, Herrera-Guerra A, et al. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management. http://www.researchgate.net/publication/342627263_Multi-System_Inflammatory_Syndrome_in_Children_MIS-C_Following_SARS-CoV-2_Infection_Review_of_Clinical_Presentation_Hypothetical_Pathogenesis_and_Proposed_Management. Children (Basel) 2020;7(7):69. [Nakra NA, Blumberg DA, Herrera-Guerra A, et al. Multi-system inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: review of clinical presentation, hypothetical pathogenesis, and proposed management[J]. Children (Basel), 2020, 7(7): 69.] [PMC free article] [PubMed] [Google Scholar]70. Vella L, Giles JR, Baxter AE, et al. Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19[J]. medRxiv, 2020. DOI: 10.1101/2020.09.25.20201863. Epub ahead of print.71. Gruber CN, Patel RS, Trachman R, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C) Cell. 2020;183(4):982–995.E14. doi: 10.1016/j.cell.2020.09.034. [Gruber CN, Patel RS, Trachman R, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C)[J]. Cell, 2020, 183(4): 982-995. E14.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]72. Mudd JC, Panigrahi S, Kyi B, et al. Inflammatory function of CX3CR1+ CD8+ T cells in treated HIV infection is modulated by platelet interactions. J Infect Dis. 2016;214(12):1808–1816. doi: 10.1093/infdis/jiw463. [Mudd JC, Panigrahi S, Kyi B, et al. Inflammatory function of CX3CR1+ CD8+ T cells in treated HIV infection is modulated by platelet interactions[J]. J Infect Dis, 2016, 214(12): 1808-1816.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]73. Motaghinejad M, Gholami M. Possible neurological and mental outcomes of COVID-19 infection: a hypothetical role of ACE-2\Mas\BDNF signaling pathway. http://www.researchgate.net/publication/346261502_Possible_Neurological_and_Mental_Outcomes_of_COVID-19_Infection_A_Hypothetical_Role_of_ACE-2MasBDNF_Signaling_Pathway. Int J Prev Med. 2020;11:84. [Motaghinejad M, Gholami M. Possible neurological and mental outcomes of COVID-19 infection: a hypothetical role of ACE-2\Mas\BDNF signaling pathway[J]. Int J Prev Med, 2020, 11: 84.] [PMC free article] [PubMed] [Google Scholar]74. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. http://europepmc.org/articles/PMC4697050/ Arch Med Sci. 2015;11(6):1164–1178. [Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications[J]. Arch Med Sci, 2015, 11(6): 1164-1178.] [PMC free article] [PubMed] [Google Scholar]


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有