空间解析几何 您所在的位置:网站首页 向量几何表示法的定义 空间解析几何

空间解析几何

2023-12-22 00:47| 来源: 网络整理| 查看: 265

一、向量及其运算

1、空间直角坐标系

2、向量及其有关概念

3、坐标表示向量

 

4、向量长度与方向余弦

二、向量的数量积、向量积和混合积

2.1 数量积(点积、内积)

 注:

    通过公式我们可以发现,两个向量的数量积就是一个数量。

    数量积又称为点积或者内积。

    ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),

        α • β = (a1i + a2j + a3k) • (b1i + b2j + b3k) = a1b1 + a2b2 + a3b3

        即两向量的数量积之和等于它们对应坐标的乘积之和。

 

 

 2.2 向量积(叉积、外积)

 注:

          向量积是一个向量,

     向量积又称为叉积和外积。

     ex: 在直角坐标系 {O; i, j, k} 中,设 α = (a1, a2, a3), β = (b1, b2, b3),

     α χ β = (a1i + a2j + a3k) χ (b1i + b2j + b3k)

          = (a2b3 - a3b2) i - (a1b3 - a3b1) j + (a1b2 - a2b1) k

 

 注:

 

 2.3 向量的混合积

注:

   向量α 与 β 的向量积,再与向量 γ 作数量积,其结果为一个数量

(空间向量基本定理)任意给定空间中三个不共面向量 α, β, γ,则空间中任一

      向量 ν 可以用 α, β, γ 唯一线性表示,即存在唯一一组实数 x, y, z 使

        ν = xα + yβ + zγ

 

 

 

三、距离公式

 



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有