六足机器人的实现原理 您所在的位置:网站首页 双足机器人原理图讲解 六足机器人的实现原理

六足机器人的实现原理

2024-06-16 18:11| 来源: 网络整理| 查看: 265

缘由: 在自然界和人类社会中存在一些人类无法到达的地方和可能危及人类生命的特殊场合。如行星表面、灾难发生矿井、防灾救援和反恐斗争等,对这些危险环境进行不断地探索和研究,寻求一条解决问题的可行途径成为科学技术发展和人类社会进步的需要。地形不规则和崎岖不平是这些环境的共同特点。从而使轮式机器人和履带式机器人的应用受到限制。以往的研究表明轮式移动方式在相对平坦的地形上行驶时,具有相当的优势运动速度迅速、平稳,结构和控制也较简单,但在不平地面上行驶时,能耗将大大增加,而在松软地面或严重崎岖不平的地形上,车轮的作用也将严重丧失移动效率大大降低。为了改善轮子对松软地面和不平地面的适应能力,履带式移动方式应运而生但履带式机器人在不平地面上的机动性仍然很差行驶时机身晃动严重。与轮式、履带式 移动机器人 相比在崎岖不平的路面步行机器人具有独特优越性能在这种背景下多足步行机器人的研究蓬勃发展起来。而仿生步行机器人的出现更加显示出步行机器人的优势。 多足步行机器人的运动轨迹是一系列离散的足印运动时只需要离散的点接触地面对环境的破坏程度也较小可以在可能到达的地面上选择最优的支撑点对崎岖地形的适应性强。正因为如此多足步行机器人对环境的破坏程度也较小。轮式和履带式机器人的则是一条条连续的辙迹。崎岖地形中往往含有岩石、泥土、沙子甚至峭壁和陡坡等障碍物可以稳定支撑机器人的连续路径十分有限,这意味着轮式和履带式机器人在这种地形中已经不适用。多足步行机器人的腿部具有多个自由度使运动的灵活性大大增强。它可以通过调节腿的长度保持身体水平也可以通过调节腿的伸展程度调整 重心 的位置因此不易翻倒稳定性更高。当然多足步行机器人也存在一些不足之处。比如为使腿部协调稳定运动从机械结构设计到控制系统算法都比较复杂相比自然界的节肢动物仿生多足步行机器人的机动性还有很大差距。

仿生原理分析: 六足机器人又叫蜘蛛机器人,是多足机器人的一种。仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成;为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

三角步态介绍: 六足步行机器人的步态是多样的,其中三角步态是六足步行机器人实现步行的典型步态。 “六足纲” 昆虫步行时,一般不是六足同时直线前进,而是将三对足分成两组,以三角形支架结构交替前行。目前,大部分六足机器人采用了仿昆虫的结构,6条腿分布在身体的两侧,身体左侧的前、后足及右侧的中足为一组,右侧的前、后足和左侧的中足为另一组,分别组成两个三角形支架,依靠大腿前后划动实现支撑和摆动过程,这就是典型的三角步态行走法,如图所示。图中机器人的髋关节在水平和垂直方向上运动。此时,B、D、F 脚为摆动脚,A、C、E脚原地不动,只是支撑身体向前。由于身体重心低,不用协调Z向运动,容易稳定,所以这种行走方案能得到广泛运用。  以六足机器人为例,组成 六足机器人基本平台 的部件包括:18个舵机(机器人关节),全身肢体结构,动力(大电流放电电池如航模电池),航模电池平衡充和充电器一个,舵机控制板一个(至少18路),还有一个作为自主控制或外部扩展的主控板(也就是各种单片机最小系统板和开发板)和配套下载模块  简单来说,舵机控制板就是机器人的中枢神经,负责动作协调,另外的机器人主控就是大脑,负责处理外界信息,统一指挥,机器人扩展的传感器就是感官系统,负责接收外界信息。舵机控制板并不是机器人的核心,它只是负责控制舵机的模块而已,功能再多也只能让机器人跳跳舞啥的,想实现机器人智能化必须要添加另外的主控,也就是给机器人装个大脑,什么样的主控呢:大家学的51,AVR,ARM单片机都可以作为机器人的主控,再在主控上添加各种传感器模块就相当于给机器人安上了口鼻眼耳等等,这样便初步形成了机器人的智能化框架

普通电机,减速电机,步进电机,伺服电机的区别 这里讲的普通电机,步进电机,伺服电机指的是直流电的微型电机,平常我们接触到的也以直流电的居多。电机的学问很深,本文只是为初学者大致讲一下制作机器人常用的各种电机。  电机,俗称“马达”,是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。电动机也称(俗称马达),在电路中用字母“M”(旧标准用“D”)表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母“G”表示。 普通直流电机 普通电机是我们平时间的比较多的电机,电动玩具,刮胡刀等里面都有。一般只有两个引脚,用电池的正负极接上两个引脚就会转起来,然后电池得正负极再相反的接在两引脚上电机也会向反转。这种电机有转速过快,扭力过小的特点,一般不直接用在智能小车上。 减速电机 减速电机就是普通电机加上了减速箱,这样便降低了转速,增加了扭力,使得普通电机有的更广泛的使用空间

智能小车底盘 减速电机一般都是用智能小车上,而对于电机的控制一般都用H桥方案,L298芯片就是这种原理。 而调速一般采用PWM(脉宽调制)机制,单片机利用定时器控制产生占空比可变的 PWM 波或者直接硬件PWM输出不同大小的波形来控制小车整体速度。 步进电机 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 收起回复 举报| 11楼 2013-12-10 11:26 七品堂:  舵机用的就是这种吧 2014-5-4 10:22 回复 专业恋爱巨蟹哥:  步进电机是可以控制转向角度的吗?能不能说的通俗点? 2014-11-26 23:05 回复 我也说一句

 

月夜灬孤星 技惊四座 9 舵机和伺服电机舵机主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机发出讯号给舵机,经由电路板上的 IC判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。位置检测器其实就是可变电阻,当舵机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。厂商所提供的舵机规格资料,都会包含外形尺寸(mm)、扭力(kg/cm)、速度(秒/60°)、测试电压(V)及重量(g)等基本资料。扭力的单位是 kg/cm,意思是在摆臂长度 1 公分处,能吊起几公斤重的物体。这就是力臂的观念,因此摆臂长度愈长,则扭力愈小。速度的单位是 sec/60°,意思是舵机转动 60°所需要的时间。 伺服电机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降. 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。  直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 舵机的认识和选购 isobot机器人玩具和不同大小的舵机 sr403p和其他舵机 直流伺服电机(舵机) 一般来讲,舵机主要由以下几个部分组成, 舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等 普通舵机拆解图 SR403p 拆解图 工作原理: 控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。 舵机的控制信号为周期是20ms的脉宽调制(PWM)信号,其中脉冲宽度从0.5ms-2.5ms,相对应舵盘的位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。给舵机一个位置信号,电机就要转动,然后带动齿轮组,把电位器转到对应角度,然后电机停止,相反当有外界力量干扰这个角度,电位器的位置就会改变,舵机内部检测电路就会再让电机重新转动,带动齿轮组把电位器转到信号指令位置,然后电机再停止,但电路检测一直检测电位器没到指定位置,就会直接让电机转动,这样噪


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有