膨化活性生物炭高效吸附双酚A的机理研究 您所在的位置:网站首页 内扩散模型和吸附动力学模型 膨化活性生物炭高效吸附双酚A的机理研究

膨化活性生物炭高效吸附双酚A的机理研究

2023-08-11 18:13| 来源: 网络整理| 查看: 265

2.1.   生物炭特性

6种生物炭的理化性质如表2所示。P的碳含量低于C,而氧含量高于C,原因可能是膨化过程使膨化玉米产生更多含氧官能团,在碳化过程中,这些含氧官能团得以部分保留。酸碱活化生物炭(HC、HP、OHC、OHP)的氧含量均高于不作任何处理的C,其中HP的氧含量最高,可达34.05% wt,说明膨化结合酸碱活化使生物炭表面引入了更多羟基或酚羟基含氧官能团[30]。H/C的值在膨化和酸碱活化后都增大,说明改性后生物炭的芳香性降低[31]。O/C和(O+N)/C值反映生物炭亲水性和极性[32]。由表2可知,P的O/C和(O+N)/C均大于C,说明膨化后生物炭的亲水性和极性均增强。酸碱活化后生物炭的亲水性和极性也增强,而且酸活化生物炭(HC、HP)亲水性和极性均强于碱活化生物炭。

BET数据结果显示膨化处理在一定程度上能增大材料的比表面积(C比表面积为409 m2·g−1,P为475 m2·g−1)。H3PO4活化可以最有效地增大材料的比表面积,HC和HP比表面积分别增大到856 m2·g−1和848 m2·g−1。碱活化增大材料比表面积的效果弱于酸活化,OHC与OHP的比表面积分别为510 m2·g−1、623 m2·g−1。膨化结合碱活化增大材料比表面积的作用强于仅通过碱活化,但仍然小于酸活化。膨化处理在酸碱活化作用中体现出截然不同的结果,原因可能是H3PO4在活化过程中仅起到造孔的作用,表现为孔径不变而总孔容增大(表2);无论是否经过膨化处理,H3PO4均可在现有碳骨架上创造更多的孔隙,因此膨化预处理在酸活化过程中影响不大。NaOH对生物炭具有蚀刻作用,可将活性炭内部部分孔道打通[33],因此OHC和OHP的平均孔径均大于其他四种炭材料(表2)。膨化作用使材料体积膨胀,孔壁变薄,有利于后续碱的刻蚀作用,使得膨化结合碱活化的生物炭表面积及孔容积大于仅通过碱活化的生物炭[34]。

在实验条件下(pH=7),6种炭材料表面均带负电荷(表2),归因于材料表面羧基和酚羟基的部分解离[35]。其中C在6种炭材料中所带的负电荷最少,说明其含有的羧基、酚羟基等可解离的含氧官能团最少,这与其最低的氧含量相吻合(表2),对材料进行膨化或酸碱改性均会使材料表面含氧官能团增加,使材料表面所带负电荷相应增多。膨化结合酸活化生物炭(HP)表面含氧官能团最多,表面所带的负电最强。

6种炭材料表观形貌的SEM分析见图1。改性后的炭材料表面形貌发生明显地变化,具体表现为:未经任何处理的C材料表面光滑,无明显的孔隙结构。膨化处理的P比C的结构更加蓬松,表面出现大小不一的孔隙和裂痕。酸活化的HC、HP表面有数量众多的微米级大孔,其中少量分布有因造孔作用而产生的碎屑。碱活化的OHC和OHP表面有更多蚀刻的孔隙结构,孔径分布具有更大的多样性。

2.2.   生物炭XRD分析

图2是在衍射角为10°—90 °的区域内碳材料的XRD图。6种生物炭在25 °和43 °处均出现了炭的无定形结构特征衍射峰,分别代表乱层石墨的(002)平面和(100)平面[36]。较宽的低强度峰是典型的纤维素晶体结构,是由于在热解过程中纤维素没有完全裂解,说明样品的石墨化程度较低[37]。膨化结合酸碱活化对生物炭晶体结构会产生不同的影响。酸活化的生物炭的光谱在10°—90 °的范围内较未活化的P、C无显著变化,而碱活化的生物炭较其他4种炭的峰型有明显不同,其在10°—90°的光谱范围内有几处尖锐的衍射峰,说明有更多的结晶矿物成分[38]。

2.3.   生物炭表面官能团分析

图3是6种生物炭的FTIR图谱。光谱中3400 cm−1附近的宽峰是—OH的特征峰,由样品基体上—OH键伸缩振动所引起[39]。6种生物炭图谱均在1640 cm−1处表现出苯环特征吸收峰[40],来源于生物质炭化过程中形成的大量芳香族化合物的C=C和C=O伸缩震动。从图3可以看出,酸活化后表面官能团没有明显的变化,而碱活化的OHC和OHP在1019 cm−1处产生C—O和C—O—C键特征吸收峰,这归因于NaOH与生物炭表面发生的活化和氧化作用,引入更多含氧官能团。

2.4.   吸附等温线

采用Freundlich和Langmuir模型分别对六种炭材料吸附BPA的数据进行拟合,拟合结果见图4和表3。Langmuir模型拟合结果的R2高于Freundlich模型,且Langmuir模型得到的理论最大吸附量Qm与实验实测值更接近,说明6种生物炭对BPA的吸附均更符合Langmuir模型,吸附过程主要为单层吸附。KL为Langmuir常数,可以评价吸附剂的吸附能力,KL值越大表示吸附剂与吸附质间的亲和力越强[41]。由表3可知,膨化生物炭亲和力强于未膨化生物炭。n为Freundlich模型的经验常数,1/n可用于评价吸附剂表面的不均匀性,1/n越接近0,吸附剂表面点位越不均匀[42]。由表3可知,无论是否活化,膨化后材料表面的不均匀性均大于未膨化材料。其中,OHP的1/n值最小,表面吸附点位最不均匀。

由表3可知,膨化后生物炭的吸附量增大(C的最大吸附量为32.93 mg·g−1;P为42.09 mg·g−1)。这是由于膨化过程使生物炭材料比表面积、总孔容和氧元素含量均增加(表2),其拥有更多的吸附位点。且膨化处理后生物炭的羟基含氧官能团增多,n-π作用增强,因此促进了BPA的吸附[43]。碱活化后膨化与未膨化生物炭的吸附量均增大,OHP的最大吸附量(138.88 mg·g−1)高于OHC(111.80 mg·g−1),从BET数据可知OHP的比表面积较OHC有很大提高,且平均孔径增大(OHP平均孔径为2.25 nm),说明膨化结合碱活化生物炭比其他几种处理得到的生物炭有更多介孔。BPA的分子尺寸为0.383 nm3×0.587 nm3×1.068 nm3,尺寸稍小于生物炭孔径,因此除表面吸附外,孔填充机制在生物炭吸附BPA时也在起作用[44]。6种材料中HC对BPA的吸附量最大,为220.74 mg·g−1,约为不经任何处理的C的吸附量的8倍;HP仅次之,为187.44 mg·g−1。酸活化可以去除材料表面的灰分,导致更多的孔结构和原本被屏蔽的疏水吸附区域暴露,增强疏水有机物的吸附[45]。表2中酸活化后材料的总孔容增大可以印证该结论。由表2可知HC和HP的氧元素含量最高,说明其含氧官能团最多。生物炭表面含氧官能团(羟基、羧基)的增加可以为污染物提供更多的结合位点,增加生物炭吸附BPA的驱动力,如电子供受体作用、静电引力、氢键、表面络合和离子交换等[46]。酸活化后材料中的羟基增多,与BPA的—OH基团更多地接触形成氢键,从而促进吸附过程,因此表现出酸活化生物炭吸附效果最好的现象,与Mpatani分析的机理相一致[47]。但HP吸附量小于HC,这可能是由于膨化后材料结构变得更松散,酸活化使部分结构塌陷。

有研究表明疏水性有机污染物在吸附到颗粒物表面后,会导致其吸附位点能量分布的改变[48]。根据Polanyi吸附势理论,吸附能与平衡液相浓度有关:

对于Langmuir等温线,通过下式计算位点能量分布:

式中,Cs为BPA的饱和溶解度(120 mg·L−1),R为理想气体常数(8.314 J·(mol·K)−1),T为绝对温度(298K)。

6种材料的点位能量分布如图5所示,BPA在6种炭材料上的吸附位点能量主要分布于2—20 kJ·mol−1的能量范围内。图5(a)为E*作为Qe的函数变化,E*随着Qe的增加而减小,表明BPA在浓度低时优先吸附于高能吸附位点,只有在浓度高时,BPA才可以与极低能量的吸附位点相互作用[49]。整体来看,能量分布呈现出HC>HP>OHP>OHC>P>C的趋势,这与六种炭材料对BPA的吸附能力顺序一致。图5(b)显示了BPA在6种炭材料上的位能分布,随着E*的增大,F(E*)先增大后减小。F(E*)曲线下的面积可以被看做特定能量范围内可利用吸附位点的数量,也遵循了HC>HP>OHP>OHC>P>C的顺序,与吸附等温线得到的吸附量的顺序相一致,进一步说明膨化与酸碱活化确实增加了材料的吸附位点。

2.5.   吸附动力学

六种生物炭的吸附动力学曲线如图6(a)。吸附开始1 h之内吸附量增加较快,此后趋于平缓,在4 h时基本达到平衡。采用拟一级动力学(图6(a))和拟二级动力学模型(图6(b))拟合BPA在六种生物炭上的吸附动力学,所得参数计算结果如表4所示。通过比较可决系数R2发现,拟二级动力学模型拟合效果更好。C和P的k2值明显高于其他四种炭材料(表4),k2值越大,吸附速率越快。这一方面是由于C、P的比表面积小,接触位点数量有限,因此会较快地达到吸附平衡;另一方面酸碱活化后含氧官能团增多,材料表面结合水分子增加,BPA到达材料表面要穿透更厚的水膜[29],因此酸碱活化的生物炭吸附速率较慢。仅酸活化的生物炭HC上BPA的吸附位点比HP上更加丰富(图5(b)),而HC的k2值显著高于HP,说明上述接触位点有限导致的吸附速度快并非导致吸附动力学差异的主要原因,水膜的作用极大地影响了吸附速率。经碱活化后,膨化处理对BPA的吸附速率无显著影响。

考虑到扩散过程对整体吸附速率的影响,利用颗粒内扩散模型[50](图4(c))对吸附动力学数据进行分析。在表4中,膨化后生物炭P吸附BPA的kd值增大,说明膨化后材料对BPA吸附过程的扩散速率加快。膨化处理会使材料内部孔结构更加松散,扩散阻力降低[51],扩散速率加快。酸碱活化后材料吸附BPA的Kd值明显增大,说明酸碱活化能提高扩散速率,这是由于酸碱活化后材料的孔隙结构更发达,内扩散过程阻力降低。而在前面拟二级动力学模型分析中,酸碱活化后整体吸附速率降低,这说明内扩散过程在整个吸附过程中对速率的影响较小,液膜扩散是主要控速步骤。C值表示拟合线在y轴的截距,若C=0,说明内扩散过程是控制吸附速率的唯一因素;C值越大,说明内扩散之外的过程在吸附动力学中的作用越强[52]。由表4可知,HC和HP的C值明显高于其它4种材料,说明酸活化的生物炭在吸附BPA过程中,除内扩散作用外,液膜扩散极大地降低了吸附速率,归因于其较高的氧含量导致较厚的水膜层。酸活化生物炭的比表面积更大,表面含氧官能团更多,BPA更容易与表面官能团接触发生电子供受体作用和氢键作用等[53],这些过程在控制吸附速率中发挥了比内扩散更大的作用。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有