赤铁矿(α 您所在的位置:网站首页 亚巨最低温度 赤铁矿(α

赤铁矿(α

2023-04-15 13:15| 来源: 网络整理| 查看: 265

Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH).

Spectral and other physicochemical properties were determined for a suite of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). The spectral reflectivity measurements were made between 0.35 and 2.20 micrograms over the temperature interval between about -110 degrees and 20 degrees C. Other physicochemical properties determined were mean particle diameter, particle shape, chemical composition, crystallographic phase, magnetic properties, and Mossbauer properties. Only the magnetite powders have significant departures from the stoichiometric phase; they are actually cation-deficient magnetites having down to about 18.0 wt % FeO as compared with 31.0 wt % FeO for stoichiometric magnetite. A structured absorption edge due to crystal field transitions and extending from weak absorption in the near-IR to intense absorption in the near-UV is characteristic of the ferric oxides and oxyhydroxides and is responsible for their intense color. Particularly for hematite, the number and position of the spectral features are consistent with significant splitting of the degenerate cubic levels by noncubic components of the crystal field. The position of the crystal-field band at lowest energy, assigned to the envelope of the components of the split cubic 4T1 level, is near 0.86, 0.91, 0.92, and 0.98 microgram at room temperature for hematite, goethite, maghemite, and lepidocrocite, respectively. Comparison with Mossbauer data suggests covalent character increases sequentially through the aforementioned series. The positions of the spectra features are relatively independent of temperature down to about -110 degrees C. The maximum shifts observed were on the order of about 0.02 microgram shortward for the ferric oxyhydroxides. Variations in the magnitude of the reflectivity of the hematite powders as a function of mean particle diameter are consistent with scattering theory. The absorption strength of the crystal-field bands increases with increasing mean particle diameter over the range 0.1-0.8 micrometer; visually this corresponds to a change in color from orange to deep purple. The position of the split cubic 4T1 band shifts longward by about 0.02 micrometer with decreasing mean particle diameter over the same range; this trend is consistent with wavelength-dependent scattering. The cation-deficient magnetite powders are very strong absorbers throughout the near-UV, visible and near-IR; their spectral properties are independent of temperature between about -110 and 20 degrees C.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有