深度学习pytorch实战三:VGG16图像分类篇自建数据集图像分类三类 您所在的位置:网站首页 vgg16和vgg19代码对比 深度学习pytorch实战三:VGG16图像分类篇自建数据集图像分类三类

深度学习pytorch实战三:VGG16图像分类篇自建数据集图像分类三类

2023-11-07 05:32| 来源: 网络整理| 查看: 265

1.自建数据集与划分训练集与测试集 2.模型相关知识 3.model.py——定义AlexNet网络模型 4.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数 5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

一、自建数据集与划分训练集与测试集

1.自建数据文件夹

  首先我们确定这次分类种类,采用爬虫、官网数据集和自己拍照的照片获取三类,准备个文件夹,里面包含三个文件夹,文件夹名字随便取,最好是所属种类英文,每个文件夹照片数量最好一样多,五百多张以上。如我选了蒲公英,玫瑰,郁金香三类,如data_set包含flowers_data,它包含flowers_photos,它包含三个文件夹,分别是三个类文件夹。

2.划分训练集与测试集

这里需要使用通用的划分数据代码,这次是与flowers_data同一目录下运行。

import os from shutil import copy import random def mkfile(file): if not os.path.exists(file): os.makedirs(file) # 获取 photos 文件夹下除 .txt 文件以外所有文件夹名(即3种分类的类名) file_path = 'flower_data/flower_photos' flower_class = [cla for cla in os.listdir(file_path) if ".txt" not in cla] # 创建 训练集train 文件夹,并由3种类名在其目录下创建3个子目录 mkfile('flower_data/train') for cla in flower_class: mkfile('flower_data/train/' + cla) # 创建 验证集val 文件夹,并由3种类名在其目录下创建3个子目录 mkfile('flower_data/val') for cla in flower_class: mkfile('flower_data/val/' + cla) # 划分比例,训练集 : 验证集 = 9 : 1 split_rate = 0.1 # 遍历3种花的全部图像并按比例分成训练集和验证集 for cla in flower_class: cla_path = file_path + '/' + cla + '/' # 某一类别动作的子目录 images = os.listdir(cla_path) # iamges 列表存储了该目录下所有图像的名称 num = len(images) eval_index = random.sample(images, k=int(num * split_rate)) # 从images列表中随机抽取 k 个图像名称 for index, image in enumerate(images): # eval_index 中保存验证集val的图像名称 if image in eval_index: image_path = cla_path + image new_path = 'flower_data/val/' + cla copy(image_path, new_path) # 将选中的图像复制到新路径 # 其余的图像保存在训练集train中 else: image_path = cla_path + image new_path = 'flower_data/train/' + cla copy(image_path, new_path) print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="") # processing bar print() print("processing done!")

最后运行,在flowers_data会多两个文件,是train和val(训练集和测试集)

二、模型相关知识

之前有文章介绍模型,如果不清楚可以点下链接转过去学习

深度学习卷积神经网络CNN之 VGGNet模型主vgg16和vgg19网络模型详解说明(理论篇)

在这里插入图片描述

三、model.py——定义AlexNet网络模型

这里还是直接复制给出原模型,不用改参数。

import torch.nn as nn import torch # official pretrain weights model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth' } class VGG(nn.Module): def __init__(self, features, num_classes=1000, init_weights=False): super(VGG, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Linear(512*7*7, 4096), nn.ReLU(True), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(p=0.5), nn.Linear(4096, num_classes) ) if init_weights: self._initialize_weights() def forward(self, x): # N x 3 x 224 x 224 x = self.features(x) # N x 512 x 7 x 7 x = torch.flatten(x, start_dim=1) # N x 512*7*7 x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) # nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_features(cfg: list): layers = [] in_channels = 3 for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) layers += [conv2d, nn.ReLU(True)] in_channels = v return nn.Sequential(*layers) cfgs = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg(model_name="vgg16", **kwargs): assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name) cfg = cfgs[model_name] model = VGG(make_features(cfg), **kwargs) return model 四、train.py——模型训练,加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数

在63行修改为3,因为只有三类; bach_size=32; 学习率 0.0001 epoch 10

net = vgg(model_name=model_name, num_classes=3, init_weights=True)

import os import sys import json import torch import torch.nn as nn from torchvision import transforms, datasets import torch.optim as optim from tqdm import tqdm from model import vgg def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("using {} device.".format(device)) data_transform = { "train": transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]), "val": transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])} data_root = os.path.abspath(os.path.join(os.getcwd(), "../..")) # get data root path image_path = os.path.join(data_root, "data_set1", "flower_data1") # flower data set path assert os.path.exists(image_path), "{} path does not exist.".format(image_path) train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"]) train_num = len(train_dataset) # {'daisy':0, 'dandelion':1, 'roses':2} flower_list = train_dataset.class_to_idx cla_dict = dict((val, key) for key, val in flower_list.items()) # write dict into json file json_str = json.dumps(cla_dict, indent=2) with open('class_indices.json', 'w') as json_file: json_file.write(json_str) batch_size = 32 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers print('Using {} dataloader workers every process'.format(nw)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=21, shuffle=True, num_workers=nw) validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"]) val_num = len(validate_dataset) validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=21, shuffle=False, num_workers=nw) print("using {} images for training, {} images for validation.".format(train_num, val_num)) # test_data_iter = iter(validate_loader) # test_image, test_label = test_data_iter.next() model_name = "vgg16" net = vgg(model_name=model_name, num_classes=3, init_weights=True)%%%%%%%%这一行 net.to(device) loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.0001) epochs = 10 best_acc = 0.0 save_path = './{}Net.pth'.format(model_name) train_steps = len(train_loader) for epoch in range(epochs): # train net.train() running_loss = 0.0 train_bar = tqdm(train_loader, file=sys.stdout) for step, data in enumerate(train_bar): images, labels = data optimizer.zero_grad() outputs = net(images.to(device)) loss = loss_function(outputs, labels.to(device)) loss.backward() optimizer.step() # print statistics running_loss += loss.item() train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss) # validate net.eval() acc = 0.0 # accumulate accurate number / epoch with torch.no_grad(): val_bar = tqdm(validate_loader, file=sys.stdout) for val_data in val_bar: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) print('Finished Training') if __name__ == '__main__': main()

训练结果截图如下,因为我是用CPU训练

在这里插入图片描述

五、predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

第一种常用

import torch from model import vgg from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt import json def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("using {} device.".format(device)) # 预处理 data_transform = transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # load image image_path = "1.jpg" img = Image.open(image_path).convert('RGB') plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict try: json_file = open('./class_indices.json', 'r') class_indict = json.load(json_file) except Exception as e: print(e) exit(-1) # create model model = vgg(num_classes=3) # load model weights model_weight_path = "./vgg16Net.pth" model.load_state_dict(torch.load(model_weight_path)) # 关闭 Dropout model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img)) # 将输出压缩,即压缩掉 batch 这个维度 predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print(class_indict[str(predict_cla)], predict[predict_cla].item()) plt.show() if __name__ == '__main__': main()

在网上下载了一蒲公英的图片,使用VGG16网络查看是否可以将图片种类正确识别。

在这里插入图片描述

第二种与前面有相似

import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import vgg def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # load image img_path = "1.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = vgg(model_name="vgg16", num_classes=3).to(device) # load model weights weights_path = "./vgg16Net.pth" assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path) model.load_state_dict(torch.load(weights_path)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()

截图如下 在这里插入图片描述



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有