液晶屏TTL屏、LVDS屏的区别 您所在的位置:网站首页 ttl和ppl相处区别 液晶屏TTL屏、LVDS屏的区别

液晶屏TTL屏、LVDS屏的区别

2024-07-12 04:29| 来源: 网络整理| 查看: 265

LVDS液晶屏和TTL液晶屏的区别简介

TTL信号是TFT-LCD能识别的标准信号,就算是以后用到的LVDS,TMDS都是在它的基础上编码得来的。TTL信号线一共有22根(最少的,没有算地和电源的)分另为R G B 三基色信号,两个HS VS 行场同步信号,一个数据使能信号DE,一个时钟信号CLK,其中R G B三基色中的每一基色又根据屏的位数不同,而有不同的数据线数(6位,和8位之分)6位屏和8位屏三基色分别有R0--R5(R7) G0--G5(G7) B0--B5(B7)三基色信号是颜色信号,接错会使屏显示的颜色错乱。另外的4根信号(HS VS DE CLK)是控制信号,接错会使屏点不亮,不能正常显示。由于TTL信号电平有3V左右,对于高速率的长距离传输影响很大,且抗干扰能力也比较差。所以之后又出现了LVDS接口的屏,只要是XGA以上 分辩率的屏都是用LVDS方式。LVDS也分单通道,双通道,6位,8位,之分,原理和TTL分法是一样的。

LVDS(低压差分信号)的工作原理是用一颗专门的IC,把输入的TTL信号编码成LVDS 信号,6位为4组差分,8位为5组差分,数据线名称为D0- D0+ D1- D1+ D2- D2+ CK- CK+ D3- D3+ 其中如果是6位屏就没有D3- D3+这一组信号,这个编码过程是在我们电脑主板上完成的。在屏的另一边,也有一颗相同功能的解码IC,把LVDS信号变成TTL信号,屏最终用的还是TTL信号。因为LVDS信号电平为1V左右,而且 - 线和 + 线之间的干扰还能相互抵消。所以抗干扰能力非常强。很适合用在高分辩率所带来高码率的屏上。

由于高分屏1400X1050(SXGA+) 1600X1200(UXGA) 的分辩率实在太高,信号的码率也相应提高,单靠一路LVDS传输已不堪重负,所以都用的是双路的LVDS接口,以降低每一路LVDS的速率,保证信号的稳定度。

源自http://blog.csdn.net/qq405180763/article/details/10427487

液晶屏TTL屏、LVDS屏的区别

1、TTL屏接口描述 TTL信号是TFT—LCD能识别的标准信号,后来用到的LVDS、TMDS等信号,都是在它的基础上篇码得来的。由于TTL信号电平有3V左右,对于高速率、长距离的传输影响很大,且抗干扰能力较差,后来的LVDS接口有效的解决了这问题。只要是XGA以上的屏,一般都是采用LVDS的接口方式。

早期的12″及以下的屏多是单6位TTL接口。屏上的接针脚一般是41针和31针,分辩率是VGA(640X480)SVGA(800X600)。12″的41针居多,分辨率是:800X600,小屏10″以下的是31针居多,分辨率是640X480,6位TTL信号线一共有22条,(最少的,电、地不计算),分别为R、G、B三基色信号,二个HS、VS行场同步信号,一个CK时钟信号,一个DE数据使能信号。其中R、G、B三基色信号根据屏的位数不同,有不同的数据线数,有6位和8位之分。其中6位屏的信号线是:R0~R5、G0~G5、B0~B5。8位屏的信号线是:R0~R7、G0~G7、B0~B7。三基色信号是颜色信号,错位会使颜色混乱,另外4条(HS、VS、DE、 CK)是控制信号,接错会是屏不亮。无法正常显示。

有关概念: H—SYNC 行同步信号 V—SYNC 场同步信号 DE(DATE ENABLE)数据使能信号。确定有效的信号显示区域,去掉无用的信号。 DE和HS、VS的区别:DE>HS\VS,有DE。可以不用HS、VS H—T TO ALL 2个H—SYNC之间的CLK V—T TO ALL 2个V—SYNC之间H—SYNC的数量。叫V—T TO ALL R、G、B 3合1是一个像素,横向、纵向排列布满液晶屏。

测试单6位、单8位的TTL屏,可以看出CLK、DE信号旁边各有2条地线。HS、VS信号是在一起的。电源(VCC)肯定连接保险管。地(GND)是最好测量的。最后是R、G、B信号。

每组R、G、B要么是一起出现。 如:GND、R0~R5、GND、GND、GND、G0~G5、GND、GND、GND、B0~B5、GND、 要么就是中间断开: 如:GND、GND、GND、R0~R2、GND、R3~R5、GND、GND、GND

在实际配屏过程中。除了现成的已知的屏,通过测量,我们可以知道一些其它屏的接口定义,另外通过测量地和电源,可以估测出其他4个信号DE、CLK、HS、VS的信号位置,和屏上的R、G、B信号分布情况。配屏改线过程中,注意屏的高位(MSB)与低位(LSB),原则是从高位往低位接。不够,丢掉低位。如:屏的R0~R5是对应接驱动板的R2~R7。

在TTL的屏中有不是标准接口的屏,这类屏给配屏带来一些困难,但接口定义也是按上述原则分布的,改线时要对屏的定义进行猜测。最好是有屏的现成的定义文件。还有40P、50P、60P、70P、80P的扣巢的屏。这类屏一般用现有的驱屏线。

***配屏原则:连线使用前,确保知道电源、地没有接错***

2、LVDS(低差分信号)

其工作原理是:把输入的TTL信号,通过一片专用的芯片编码差分为LVDS信号。单6位屏为4组差分,(3组数据、1组时钟)单8屏为5组差分(4组数据、1组时钟)。信号定义为:D0-、D0+ | D1-、D1+ | D2-、D2+ | CK-、CK+ | D3-、D3+,如果是单6位的屏就没有D3-、D3+这一组数据了。LVDS的屏归根结底也是TTL的屏,因为LVDS的信号电平是1V左右,而且 -线和+线之间的干扰可以相互抵消,抗干扰能力强,很适合用在高分辩率的屏上。

由于一些高分屏的分辩率实在是太高,单靠一路LVDS传输已不堪重负,所以都采用双路LVDS接口,降低每一路LVDS的速率,提高信号的稳定度,双6位屏就是为8组差分,(6组数据、2组时钟),双8屏为10组差分(8组数据、2组时钟)。

通常在LVDS接口屏中,多为扁平插头。14P、20P、30P,也有双排21P的。14P的理论上支持(单6、单8)位的屏,20P、21P的理论上支持(单6、单8、双6)位的屏,30P的就都有可能了

和TTL的屏比较,LVDS的屏要单一的多。测量和估计要容易很多,LVDS的接口可以用万用表测屏,先找出地,再找到电源,电源是和保险在一起的,接着就是信号,LVDS屏的信号是成对的,没对之间的电阻是100欧,一般来说是(-、+、GND)难的是要识别时钟在数据之前还是在后。

20P双6位LVDS屏的定义 屏脚 定义    屏脚  定义       屏脚  定义        屏脚   定义 1     VCC       6   RAX0+     11    RAXC-      16  RBX1+ 2     VCC       7   RAX1-      12    RAXC+     17  RBX2- 3     GND      8   RAX1+     13    RBX0-       18  RBX2+ 4     GND      9   RAX2-      14    RBX0+      19  RBXC- 5     RAX0-   10  RAX2+     15    RBX1-       20  RBXC+

20P单8位屏的定义 屏脚 定义   屏脚 定义     屏脚   定义        屏脚   定义 1 VCC        6    RAX0+    11    RAX2-      16     GND 2 VCC        7   GND        12    RAX2+     17     RAX3-

30P双6位屏的定义

屏脚    定义     屏脚  定义    屏脚  定义       屏脚  定义    屏脚   定义     屏脚   定义 1        GND     6        /        11    DA1-      16   GND      21   DB0+      26    DB2- 2       VCC      7        /        12    DA1+      17   DAC-     22   GND       27    DB2+ 3       VCC      8     DA0-      13    GND       18   DAC+    23   DB1-       28   GND 4       /          9     DA0+     14    DA2-      19   GND      24   DB1+      29   DBC- 5       /          10    GND      15    DA2+     20   DB0-      25   GND       30   DBC+

30P双8位屏的定义 屏脚  定义    屏脚   定义    屏脚    定义     屏脚   定义       屏脚   定义     屏脚   定义 1      VCC      6      GND     11    DB3-     16      DB1+       21   DAC+     26     DA1+ 2      VCC      7       /        12     DBC+    17      DB1+       22   DAC-      27     DA1- 3      VCC      8       /        13     DBC-     18      DB0-        23   DA2+     28     DA0+ 4      GND     9       GND    14    DB2+     19      DA3+      24   DA2+     29     DA0- 5      GND     10     DB3+   15   DB2       20      DA3-      25    DA2-      30     GND

3、液晶屏接口等知识 

笔记本电脑的液晶屏当成独立的显示器

笔记本电脑的液晶屏当成独立的显示器的方法,我现在将一些关于改屏的基础知识给大家介绍一下,希望对大家有所帮助。

所有TFT-LCD的数据接口种类: 单TTL6位(8位) 双TTL6位(8位) 单LVDS6位(8位) 双LVDS6位(8位) 单TMDS6位(8位) 双TMDS6位(8位) 还有最新出来的标准RSDS 6位和8位是用来表示屏能显示颜色多少,6位屏可以显示颜色为 2的6次方X2的6次方X2的6次方分别代表R G B 三基色,算下来6位屏最多可以显示的颜色为262144种颜色,8位屏为16777216种颜色。屏显示颜色的多少只和屏的位数有关。我们本本用的屏一般都是6位的。

早期的本本都是用12寸以下的屏,该种屏分辩率一般为640X480(VGA) 800X600(SVGA),采用的接口为单TTL6位,屏上接针脚为41针和31针,12寸以41针居多(800X600),10寸以31针居多(640X480)。TTL信号是TFT-LCD能识别的标准信号,就算是以后用到的LVDS TMDS 都是在它的基础上编码得来的。TTL信号线一共有22根(最少的,没有算地和电源的)分另为R G B 三基色信号,两个HS VS 行场同步信号,一个数据使能信号DE 一个时钟信号CLK,其中R G G三基色中的每一基色又根据屏的位数不同,而有不同的数据线数(6位,和8位之分)6位屏和8位屏三基色分别有R0--R5(R7) G0--G5(G7) B0--B5(B7)三基色信号是颜色信号,接错会使屏显示的颜色错乱。另外的4根信号(HS VS DE CLK)是控制信号,接错会使屏点不亮,不能正常显示。

由于TTL信号电平有3V左右,对于高速率的长距离传输影响很大,且抗干扰能力也比较差。所以之后又出现了LVDS接口的屏,只要是XGA以上分辩率的屏都是用LVDS方式。LVDS也分单通道,双通道,6位,8位,之分,原理和TTL分法是一样的。 LVDS(低压差分信号)的工作原理是用一颗专门的IC,把输入的TTL信编码成LVDS 信号,6位为4组差分,8位为5组差分,数据线名称为D0- D0+ D1- D1+ D2- D2+ CK- CK+ D3- D3+ 其中如果是6位屏就没有D3- D3+这一组信号,这个编码过程是在我们电脑主板上完成的。在屏的另一边,也有一颗相同功能的解码IC,把LVDS信号变成TTL信号,屏最终用的还是TTL信号,因为LVDS信号电平为1V左右,而且-线和+线之间的干扰还能相互抵消。所以抗干扰能力非常强。很适合用在高分辩率所带来高码率的屏上。 由于高分屏1400X1050(SXGA+) 1600X1200(UXGA)的分辩率实在太高,信号的码率也相应提高,单靠一路LVDS传输已不堪重负,所以都用的是双路的LVDS接口,以降低每一路LVDS的速率。保证信号的稳定度。

对于笔记本上用的XGA屏,一般都是20针扁平接口,对应的接口定义为 1 VCC 2 VCC 3 GND 4 GND 5 D0- 6 D0+ 7 GND 8 D1- 9 D1+ 10 GND 11 D2- 12 D2+ 13 GND 14 CK- 15 CK+ 16 GND 17 空 18 空 19 空 20 空。 高分屏用的是30针扁平接口,对应定义为: 1 GND 2 VCC 3 VCC 4 空 5 空 6 空 7 空 8 DA0- 9 DA0+ 10 GND 11 DA1- 12 DA1+ 13 GND 14 DA2- 15 DA2+ 16 GND 17 CKA- 18 CKA+ 19 GND 20 DB0- 21 DB0+ 22 GND 23 DB1- 24 DB1+ 25 GND 26 DB2- 27 DB2+ 28 GND 29 CKB- 30 CKB+

源自http://www.wuyazi.com/dlt/jichudianlu/dzrm/201303/22161.html

(以上整理来源互联网)



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有