操作系统实验三 进程调度 您所在的位置:网站首页 pcb实验报告实验目的 操作系统实验三 进程调度

操作系统实验三 进程调度

2024-03-19 17:26| 来源: 网络整理| 查看: 265

实验三 进程调度 一、实验目的 1、 理解有关进程控制块、进程队列的概念。2、 掌握进程优先权调度算法和时间片轮转调度算法的处理逻辑。 二、实验内容与基本要求 1、 设计进程控制块PCB的结构,分别适用于优先权调度算法和时间片轮转调度算法。2、 建立进程就绪队列。3、 编制两种进程调度算法:优先权调度算法和时间片轮转调度算法。 三、实验报告要求 1、 优先权调度算法和时间片轮转调度算法原理。2、 程序流程图。3、 程序及注释。4、 运行结果以及结论。 四、实验报告

1.时间片轮转调度算法(round robin)

a.该算法采取了非常公平的方式,即让就绪队列上的每个进程每次仅运行一个时间片。如果就绪队列上有N个进程,则每个进程每次大约都可获得1/N的处理机时间。

b时间片的大小对于系统性能有很大的影响。若选择很小的时间片,将有利于短作业,但意味着会频繁地执行进程调度和进程上下文的切换,这无疑会增加系统的开销。反之,若时间片选择得太长,且为使每个进程都能在一个时间片内完成,RR算法便退化为FCFS算法,无法满足短作业和交互式用户的需求。

c.进程的切换时机体现出RR算法的特点。若一个进程在时间片还没结束时就已完成,此时立即激活调度程序,将它从执行队列中删除。若一个进程在时间片结束时还未运行完毕,则调度程序将把它送往就绪队列的末尾,等待下一次执行。用C语言编程模拟调度程序时,将时间片,程序运行时间量化为整数。此时代码

2.优先权调度算法

a.在时间片算法中,无法对进程的紧急程度加以区分。而优先级算法正好可以解决这一问题。

b.进程优先级的确定同样重要。进程优先级可以分为静态优先级和动态优先级。静态优先级是在进程创建初期就被确定的值,此后不再更改。动态优先级指进程在创建时被赋予一个初值,此后其值会所进程的推进或等待时间的增加而改变。

c.用C语言模拟调度程序时,可用run->prio -= 3; /*优先级减去三,若设为0则优先级不变*/ 这条语句控制静态动态优先级的切换。

3.程序流程图 这里写图片描述

4.程序代码及注释

#include #include #include typedef struct node { char name[20]; /*进程的名字*/ int prio; /*进程的优先级*/ int round; /*分配CPU的时间片*/ int cputime; /*CPU执行时间*/ int needtime; /*进程执行所需要的时间*/ char state; /*进程的状态,W--就绪态,R--执行态,F--完成态*/ int count; /*记录执行的次数*/ struct node *next; /*链表指针*/ }PCB; PCB *ready=NULL,*run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/ int num; void GetFirst(); /*从就绪队列取得第一个节点*/ void Output(); /*输出队列信息*/ void InsertPrio(PCB *in); /*创建优先级队列,规定优先数越小,优先级越高*/ void InsertTime(PCB *in); /*时间片队列*/ void InsertFinish(PCB *in); /*时间片队列*/ void PrioCreate(); /*优先级输入函数*/ void TimeCreate(); /*时间片输入函数*/ void Priority(); /*按照优先级调度*/ void RoundRun(); /*时间片轮转调度*/ int main(void) { char chose; printf("请输入要创建的进程数目:\n"); scanf("%d",&num); getchar(); printf("输入进程的调度方法:(P/R)\n"); scanf("%c",&chose); switch(chose) { case 'P': case 'p': PrioCreate(); Priority(); break; case 'R': case 'r': TimeCreate(); RoundRun(); break; default:break; } Output(); return 0; } void GetFirst() /*取得第一个就绪队列节点*/ { run = ready; if(ready!=NULL) { run ->state = 'R'; ready = ready ->next; run ->next = NULL; } } void Output() /*输出队列信息*/ { PCB *p; /*p = ready;*/ printf("进程名\t优先级\t时间片\tcpu时间\t需要时间\t进程状态\t计数器\n"); p = ready; while(p!=NULL) { printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count); p = p->next; } p = finish; while(p!=NULL) { printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count); p = p->next; } p = run; while(p!=NULL) { printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count); p = p->next; } } void InsertPrio(PCB *in) /*创建优先级队列,规定优先数越小,优先级越低*/ { PCB *fst,*nxt; fst = nxt = ready; if(ready == NULL) /*如果队列为空,则为第一个元素*/ { in->next = ready; ready = in; } else /*查到合适的位置进行插入*/ { if(in ->prio > fst ->prio) /*比第一个还要大(大于等于),则插入到队头*/ { in->next = ready; ready = in; } else { while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/ { nxt = fst; fst = fst->next; } if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/ { in ->next = fst ->next; fst ->next = in; } else /*插入到队列中*/ { nxt = in; in ->next = fst; } } } } void InsertTime(PCB *in) /*将进程插入到就绪队列尾部*/ { PCB *fst; fst = ready; if(ready == NULL) { in->next = ready; ready = in; } else { while(fst->next != NULL) { fst = fst->next; } in ->next = fst ->next; fst ->next = in; } } void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/ { PCB *fst; fst = finish; if(finish == NULL) { in->next = finish; finish = in; } else { while(fst->next != NULL) { fst = fst->next; } in ->next = fst ->next; fst ->next = in; } } void PrioCreate() /*优先级调度输入函数*/ { PCB *tmp; int i; printf("输入进程名字和进程所需时间:\n"); for(i = 0;i < num; i++) { if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL) { perror("malloc"); exit(1); } scanf("%s",tmp->name); getchar(); /*吸收回车符号*/ scanf("%d",&(tmp->needtime)); tmp ->cputime = 0; tmp ->state ='W'; tmp ->prio = 50 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/ tmp ->round = 0; tmp ->count = 0; InsertPrio(tmp); /*按照优先级从高到低,插入到就绪队列*/ } } void TimeCreate() /*时间片输入函数*/ { PCB *tmp; int i; printf("输入进程名字和进程时间片所需时间:\n"); for(i = 0;i < num; i++) { if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL) { perror("malloc"); exit(1); } scanf("%s",tmp->name); getchar(); scanf("%d",&(tmp->needtime)); tmp ->cputime = 0; tmp ->state ='W'; tmp ->prio = 0; tmp ->round = 2; /*假设每个进程所分配的时间片是2*/ tmp ->count = 0; InsertTime(tmp); } } void Priority() /*按照优先级调度,每次执行一个时间片*/ { int flag = 1; GetFirst(); while(run != NULL) /*当就绪队列不为空时,则调度进程如执行队列执行*/ { Output(); /*输出每次调度过程中各个节点的状态*/ while(flag) { run->prio -= 0; /*优先级减去三,若设为0则优先级不变*/ run->cputime++; /*CPU时间片加一*/ run->needtime--;/*进程执行完成的剩余时间减一*/ if(run->needtime == 0)/*如果进程执行完毕,将进程状态置为F,将其插入到完成队列*/ { run ->state = 'F'; run->count++; /*进程执行的次数加一*/ InsertFinish(run); flag = 0; } else /*将进程状态置为W,入就绪队列*/ { run->state = 'W'; run->count++; /*进程执行的次数加一*/ InsertTime(run); flag = 0; } } flag = 1; GetFirst(); /*继续取就绪队列队头进程进入执行队列*/ } } void RoundRun() /*时间片轮转调度算法*/ { int flag = 1; GetFirst(); while(run != NULL) { Output(); while(flag) { run->count++; run->cputime++; run->needtime--; if(run->needtime == 0) /*进程执行完毕*/ { run ->state = 'F'; InsertFinish(run); flag = 0; } else if(run->count == run->round)/*时间片用完*/ { run->state = 'W'; run->count = 0; /*计数器清零,为下次做准备*/ InsertTime(run); flag = 0; } } flag = 1; GetFirst(); } } 五.程序运行验证

1.RR算法 这里写图片描述 2.动态优先级算法 这里写图片描述

3.静态优先级算法 静态优先级算法仅在一条语句上有区别,运行示意图类似RR算法,每个进程按照固定的优先级(即50减去需要时间)依次执行。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有