使用LSTM深度学习模型进行温度的时间序列单步和多步预测 您所在的位置:网站首页 lstm模型预测结果明显滞后 使用LSTM深度学习模型进行温度的时间序列单步和多步预测

使用LSTM深度学习模型进行温度的时间序列单步和多步预测

2024-07-01 13:46| 来源: 网络整理| 查看: 265

本文的目的是提供代码示例,并解释使用python和TensorFlow建模时间序列数据的思路。

本文展示了如何进行多步预测并在模型中使用多个特征。

本文的简单版本是,使用过去48小时的数据和对未来1小时的预测(一步),我获得了温度误差的平均绝对误差0.48(中值0.34)度。

利用过去168小时的数据并提前24小时进行预测,平均绝对误差为摄氏温度1.69度(中值1.27)。

所使用的特征是过去每小时的温度数据、每日及每年的循环信号、气压及风速。

使用来自https://openweathermap.org/的API获取数据。这些数据从1990年1月1日到2020.11月30日每小时在维尔纽斯电视塔附近收集一次。维尔纽斯不是一个大城市,电视塔就在城市里,所以电视塔附近的温度应该和城市所有地方的温度非常相似。

这里和整篇文章的主数据对象被称为d。它是通过读取原始数据创建的:

代码语言:javascript复制d = pd.read_csv(‘data/weather.csv’) # Converting the dt column to datetime object d[‘dt’] = [datetime.datetime.utcfromtimestamp(x) for x in d[‘dt’]] # Sorting by the date d.sort_values(‘dt’, inplace=True)

数据集中共有271008个数据点。

数据似乎是具有明确的周期模式。

上面的图表显示,气温有一个清晰的昼夜循环——中间温度在中午左右最高,在午夜左右最低。

这种循环模式在按月份分组的温度上更为明显——最热的月份是6月到8月,最冷的月份是12月到2月。

数据现在的问题是,我们只有date列。如果将其转换为数值(例如,提取时间戳(以秒为单位))并将其作为建模时的特性添加,那么循环特性将丢失。因此,我们需要做的第一件事就是设计一些能够抓住周期性趋势的特性。

我们想让机器知道,23点和0点比小时0点和4点更接近。我们知道周期是24小时。我们可以用cos(x)和sin(x)函数。函数中的x是一天中的一个小时。

代码语言:javascript复制# Extracting the hour of day d["hour"] = [x.hour for x in d["dt"]] # Creating the cyclical daily feature d["day_cos"] = [np.cos(x * (2 * np.pi / 24)) for x in d["hour"]] d["day_sin"] = [np.sin(x * (2 * np.pi / 24)) for x in d["hour"]]

得到的dataframe如下:

新创建的特征捕捉了周期性模式。可能会出现一个问题,为什么我们同时使用sin和cos函数?

在上图中绘制一条水平线并仅分析其中一条曲线,我们将得到例如cos(7.5h)= cos(17.5h)等。在学习和预测时,这可能会导致一些错误,因此为了使每个点都唯一,我们添加了另一个循环函数。同时使用这两个功能,可以将所有时间区分开。

为了在一年中的某个时间创建相同的循环逻辑,我们将使用时间戳功能。python中的时间戳是一个值,用于计算自1970.01.01 0H:0m:0s以来经过了多少秒。python中的每个date对象都具有timestamp()函数。

代码语言:javascript复制# Extracting the timestamp from the datetime object d["timestamp"] = [x.timestamp() for x in d["dt"]] # Seconds in day s = 24 * 60 * 60 # Seconds in year year = (365.25) * sd["month_cos"] = [np.cos((x) * (2 * np.pi / year)) for x in d["timestamp"]] d["month_sin"] = [np.sin((x) * (2 * np.pi / year)) for x in d["timestamp"]]

在本节中,我们从datetime列中创建了4个其他功能:day_sin,day_cos,month_sin和month_cos。

在天气数据集中,还有两列:wind_speed和pressure。风速以米/秒(m / s)为单位,压力以百帕斯卡(hPa)为单位。

要查看温度与两个特征之间的任何关系,我们可以绘制二维直方图:

颜色越强烈,两个分布的某些bin值之间的关系就越大。例如,当压力在1010和1020 hPa左右时,温度往往会更高。

我们还将在建模中使用这两个功能。

我们使用所有要素工程获得的数据是:

我们要近似的函数f为:

目标是使用过去的值来预测未来。数据是时间序列或序列。对于序列建模,我们将选择具有LSTM层的递归神经网络的Tensorflow实现。

LSTM网络的输入是3D张量:

(样本,时间步长,功能)

样本—用于训练的序列总数。

timesteps-样本的长度。

功能-使用的功能数量。

建模之前的第一件事是将2D格式的数据转换为3D数组。以下功能可以做到这一点:

例如,如果我们假设整个数据是数据的前10行,那么我们将过去3个小时用作特征,并希望预测出1步:

代码语言:javascript复制def create_X_Y(ts: np.array, lag=1, n_ahead=1, target_index=0) -> tuple: """ A method to create X and Y matrix from a time series array for the training of deep learning models """ # Extracting the number of features that are passed from the array n_features = ts.shape[1] # Creating placeholder lists X, Y = [], [] if len(ts) - lag


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有