机器学习kaggle入门案例 您所在的位置:网站首页 kaggle经典数据集分析 机器学习kaggle入门案例

机器学习kaggle入门案例

2023-10-06 09:10| 来源: 网络整理| 查看: 265

公众号:尤而小屋作者:Peter编辑:Peter

大家好,我是Peter~

Titanic数据是一份经典数据挖掘的数据集,本文介绍的是kaggle排名第一的案例分享。原notebook地址:

www.kaggle.com/startupsci/…

排名

看下这个案例的排名情况:

第一名和第二名的差距也不是很多,而且第二名的评论远超第一名;有空再一起学习下第二名的思路。

通过自己的整体学习第一名的源码,前期对字段的处理很细致,全面;建模的过程稍微比较浅。

数据探索 导入库

导入整个过程中需要的三类库:

数据处理 可视化库 建模库 # 数据处理 import pandas as pd import numpy as np import random as rnd # 可视化 import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # 模型 from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier 导入数据

导入数据后查看数据的大小

字段信息

查看全部的字段:

train.columns Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')

下面是字段的具体含义:

PassengerId:用户id survival:是否生还,0-否,1-是 pclass:舱位,1-头等舱,2-二等,3-三等 name:姓名 sex:性别 Age:年龄 sibsp:在船上的兄弟/配偶数 parch:在船上父母/孩子数 ticket:票号 fare:票价 cabin:Cabin number;客舱号 embarked:登船地点 字段分类

本案例中的数据主要是有两种类型:

分类型Categorical: Survived, Sex, and Embarked. Ordinal: Pclass 连续型Continous: Age, Fare. Discrete: SibSp, Parch 缺失值

查看训练集和测试集的缺失值情况:

同时也可以通过info函数来查数据的基本信息:

数据假设

作者基于数据的基本信息和常识,给出了自己的一些假设和后面的数据处理和分析方向:

删除字段 本项目主要是考察其他字段和Survival字段的关系 重点关注字段:Age、Embarked 删除字段:对数据分析没有作用,直接删除的字段:Ticket(票号)、Cabin(客舱号)、PassengerId(乘客号)、Name(姓名) 修改、增加字段 增加Family:根据Parch(船上的兄弟姐妹个数) 和 SibSp(船上的父母小孩个数) 从Name字段中提取Title作为新特征 将年龄Age字段转成有序的分类特征 创建一个基于票价Fare 范围的特征 猜想 女人(Sex=female)更容易生还 小孩(Age>?)更容易生还 船舱等级高的乘客更容易生还(Pclass=1) 统计分析

主要是对分类的变量Sex、有序变量Pclss、离散型SibSp、Parch进行分析来验证我们的猜想

1、船舱等级(1-头等,2-二等,3-三等)

结论:头等舱的人更容易生还

2、性别

结论:女人更容易生还

3、兄弟姐妹/配偶数

结论:兄弟姐妹或者配偶数量相对少的乘客更容易生还

4、父母/孩子数

结论:父母子女在3个的时候,更容易生还

可视化分析 年龄与生还 g = sns.FacetGrid(train, col="Survived") g.map(plt.hist, 'Age', bins=20) plt.show()

对于未生还的人员,大多数集中在15-25岁(左图) 生还人员年龄最大为80;同时4岁以下的小孩生还率很高(右图) 乘客的年龄大多数集中在15-35岁(两图) 舱位与生还 grid = sns.FacetGrid( train, col="Survived", row="Pclass", size=2.2, aspect=1.6 ) grid.map(plt.hist,"Age",alpha=0.5,bins=20) grid.add_legend() plt.show()

舱位等级3的乘客最多;但是很多没有生还 舱位等级1的乘客生还最多 登船地点、性别与生还的关系 grid = sns.FacetGrid(train, row="Embarked", size=2.2, aspect=1.6) grid.map(sns.pointplot, "Pclass", "Survived", "Sex", palette="deep") grid.add_legend() plt.show()

女性比男性的生还情况要好 除了在Embarked=C,男性的生还率要高些。 当舱位等级都在Pclass=3,男性的在Embarked=C的生还率好于Q 票价、舱位与生还 grid = sns.FacetGrid(train, row='Embarked', col='Survived', size=2.2, aspect=1.6) grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None) grid.add_legend() plt.show()

票价越高,生还效果越好;右侧上2图 生还率和登船的位置相关;明显在Embarked=C的情况是最好的

上面都是基于简单的统计和可视化方面的分析,下面的过程是基于各种机器学习建模的方法来进行分析,前期做了很多的预处理好特征工程的工作。

删除无效字段

票价ticket和客舱号Cabin对我们分析几乎是没有用的,可以考虑直接删除:

生成新特征

主要是根据现有的特征属性中找到一定的关系,来生成新的特征,或者进行一定的特征属性转化。

字段Name处理

根据名称Name生成找到称谓,比如Lady、Dr、Miss等信息,来查看这个称谓和生还信息之间是否存在关系

# 通过正则提取 for dataset in combine: dataset["Title"] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False) # 统计Title下的男女数量 train.groupby(["Sex","Title"]).size().reset_index()

使用交叉表的形式统计:

# 交叉表形式 pd.crosstab(train['Title'], train['Sex'])

将提取出来的称谓进行整理,归类为常见的称谓和Rare信息:

for dataset in combine: dataset["Title"] = dataset["Title"].replace(['Lady', 'Countess','Capt', 'Col',\ 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') # 根据称谓Title求生还的均值 train[["Title","Survived"]].groupby("Title",as_index=False).mean()

称谓本身是文本型对后期建模无用,我们直接转成数值型:

title_mapping = { "Mr":1, "Miss":2, "Mrs":3, "Master":4, "Rare":5 } for dataset in combine: # 存在数据的进行匹配 dataset['Title'] = dataset['Title'].map(title_mapping) # 不存在则补0 dataset['Title'] = dataset['Title'].fillna(0) train.head()

同时还需要删除部分字段:

train = train.drop(['Name', 'PassengerId'], axis=1) test = test.drop(['Name'], axis=1) combine = [train, test] train.shape, test.shape # ((891, 9), (418, 9)) 字段Sex

将性别的Male和Female转成0-Male,1-Female

for dataset in combine: dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)

性别、年龄、生还之间的关系:

grid = sns.FacetGrid( train, row='Pclass', col='Sex', size=2.2, aspect=1.6) grid.map(plt.hist, 'Age', alpha=.5, bins=20) grid.add_legend() plt.show()

字段Age

1、首先就是字段的缺失值处理。

我们观察到年龄字段是存在缺失值的,我们通过Sex(0、1)和Pclass(1、2、3)的6种组合关系来进行填充。缺失值情况:

填充的具体过程:

guess_ages = np.zeros((2,3)) for dataset in combine: for i in range(0,2): for j in range(0,3): # 找到某种条件下Age字段的缺失值并删除 guess_df = dataset[(dataset["Sex"] == i) & (dataset["Pclass"] == j+1)]["Age"].dropna() age_guess = guess_df.median() # 中位数 guess_ages[i,j] = int(age_guess / 0.5 + 0.5) * 0.5 for i in range(0,2): for j in range(0,3): dataset.loc[(dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),"Age"] = guess_ages[i,j] dataset["Age"] = dataset["Age"].astype(int) # 填充后不存在缺失值 train.isnull().sum()

2、年龄分段分箱

3、转成数值分类

年龄小于16用0替代 16到32用1替代等... for dataset in combine: dataset.loc[dataset["Age"] 16) & (dataset["Age"] 32) & (dataset["Age"] 48) & (dataset["Age"] 64), "Age"] = 4 # 删除年龄段AgeBand字段 train = train.drop(["AgeBand"], axis=1) combine = [train, test] 字段处理

根据现有的字段来生成新字段:

生成新字段1

首先根据Parch和SibSp两个字段生成一个FamilySize字段

for dataset in combine: dataset["FamilySize"] = dataset["SibSp"] + dataset["Parch"] + 1 # 每个FamilySize的生还均值 train[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False)

根据字段FamilySize来判断是否Islone:如果家庭成员FamilySize是一个人,那肯定是Islone的,用1表示,否则用0表示

最后将 Parch, SibSp, and FamilySize删除,仅保留是否一个人Islone:

# 将 Parch, SibSp, and FamilySize删除,仅保留是否一个人Islone train = train.drop(['Parch', 'SibSp', 'FamilySize'],axis=1) test = test.drop(['Parch', 'SibSp', 'FamilySize'],axis=1) combine = [train, test] train.head() 生成新字段2

新字段2是Age和Pclass的乘积:

Embarked字段的分类

Embarked字段取值有SQC。首先我们填充里面的缺失值

查看这个字段是存在缺失值的:

处理:找出众数、填充缺失值、查看每个取值的均值

将文本类型转成数值型:

Fare字段处理

训练集这个字段是没有缺失值,测试集中存在一个:

使用中值进行填充:

实行分箱操作:

# 只对FareBand字段分箱 train['FareBand'] = pd.qcut(train['Fare'], 4) # 分成4组 # 生还的均值 train[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)

将每个段转成数值型的数据:

# 4个分段 for dataset in combine: dataset.loc[ dataset['Fare'] 7.91) & (dataset['Fare'] 14.454) & (dataset['Fare'] 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) # train = train.drop(['FareBand'], axis=1) combine = [train, test] test.head()

这样我们就得到最终用于建模的字段和数据:

建模

下面是具体的建模过程,我们先划分数据集:

# 训练集 X_train = train.drop("Survived", axis=1) Y_train = train["Survived"] # 测试集 X_test = test.drop("PassengerId", axis=1).copy() X_train.shape, Y_train.shape, X_test.shape

每个模型的具体过程:

建立模型实例化的对象 拟合训练集 对测试集进行预测 计算准确率 模型1:逻辑回归 # 模型实例化 logreg = LogisticRegression() # 拟合过程 logreg.fit(X_train, Y_train) # 测试集预测 Y_pred = logreg.predict(X_test) # 准确率求解 acc_log = round(logreg.score(X_train, Y_train) * 100, 2) acc_log # 结果 81.37

逻辑回归模型得到的系数:

# 逻辑回归特征和系数 coeff_df = pd.DataFrame(train.columns[1:]) # 除去Survived特征 coeff_df.columns = ["Features"] coeff_df["Correlation"] = pd.Series(logreg.coef_[0]) # 从高到低 coeff_df.sort_values(by='Correlation', ascending=False)

结论:性别对我们的生还真的是一个重要的影响因素

模型2:支持向量机SVM

模型3:KNN

模型4:朴素贝叶斯

模型5:感知机

模型6:线性支持向量分类 linear_svc = LinearSVC() linear_svc.fit(X_train, Y_train) Y_pred = linear_svc.predict(X_test) acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2) acc_linear_svc # 结果 79.46 模型7:随机梯度下降

模型8:决策树

模型9:随机森林

模型对比

将上面9种模型的结果(准确率)进行对比:

models = pd.DataFrame({ 'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Stochastic Gradient Decent', 'Linear SVC', 'Decision Tree'], 'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_sgd, acc_linear_svc, acc_decision_tree]}) models.sort_values(by='Score', ascending=False)

通过对比结果:决策树和随机森林在这份数据集表现的效果是最好的;其次就是KNN(K近邻)算法。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有