GC回收之二:4种垃圾收集算法及7种垃圾收集器 您所在的位置:网站首页 gdp有几种算法 GC回收之二:4种垃圾收集算法及7种垃圾收集器

GC回收之二:4种垃圾收集算法及7种垃圾收集器

2024-07-11 21:35| 来源: 网络整理| 查看: 265

本文主要介绍4种垃圾收集算法及8种垃圾收集器:

垃圾收集算法

1、标记-清除算法(Mark-Sweep)

“标记-清除”算法是最基础的算法,分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。它主要由两个缺点:一个是效率问题,标记和清除过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

2、复制算法(Copying)(针对新生代)

      为了解决标记清除算法的效率问题,出现了复制算法,它将可用内存按容量划分为大小相等的两块,每次使用其中的一块。当这块的内存用完了,就将还存活着的对象复制到另一块上面,然后再把已使用过的内存空间一次清理掉。优点是每次都是对其中的一块进行内存回收,内存分配时就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。缺点是将内存缩小为原来的一半,代价太高了一点。

        现在的商业虚拟机都采用复制收集算法来回收新生代,有研究表明,新生代中的对象98%是朝生夕死的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存是会被“浪费”的。当然,并不能保证每次回收都只有10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。即如果另外一块Survivor空间没有足够的空间存放上一次新生代收集下来的存活对象,这些对象将直接通过分配担保机制进入老年代。

3、标记-整理算法(Mark-Compact)(针对老年代)

      复制收集算法在对象存活率较高时就需要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用复制收集算法。

     根据老年代的特点提出了“标记-整理”算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

 标记-整理的步骤: 标记阶段整理阶段:移动存活对象,同时更新存活对象中所有指向被移动对象的指针

整理的顺序

    不同算法中,堆遍历的次数,整理的顺序,对象的迁移方式都有所不同。而整理顺序又会影响到程序的局部性。主要有以下3种顺序: 

     1. 任意顺序:对象的移动方式和它们初始的对象排列及引用关系无关 

       任意顺序整理实现简单,且执行速度快,但任意顺序可能会将原本相邻的对象打乱到不同的高速缓存行或者是虚拟内存页中,会降低赋值器的局部性。任意顺序算法只能处理单一大小的对象,或者针对大小不同的对象需要分批处理;

     2. 线性顺序:将具有关联关系的对象排列在一起      3. 滑动顺序:将对象“滑动”到堆的一端,从而“挤出”垃圾,可以保持对象在堆中原有的顺序     所有现代的标记-整理回收器均使用滑动整理,它不会改变对象的相对顺序,也就不会影响赋值器的空间局部性。复制式回收器甚至可以通过改变对象布局的方式,将对象与其父节点或者兄弟节点排列的更近以提高赋值器的空间局部性。    

整理算法的限制,如整理过程需要2次或者3次遍历堆空间;对象头部可能需要一个额外的槽来保存迁移的信息。

部分整理算法:

双指针回收算法:实现简单且速度快,但会打乱对象的原有布局Lisp2算法(滑动回收算法):需要在对象头用一个额外的槽来保存迁移完的地址引线整理算法:可以在不引入额外空间开销的情况下实现滑动整理,但需要2次遍历堆,且遍历成本较高单次遍历算法:滑动回收,实时计算出对象的转发地址而不需要额外的开销

4、分代收集算法(Generational Collection)

      当前商业虚拟机的垃圾收集都采用“分代收集”算法,这种算法并无新的方法,只是根据对象的存活周期的不同将内存划分为几块,一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

垃圾收集器

如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。下图展示了7种不同分代的收集器,如果两个收集器之间存在连线,就说明他们可以搭配使用。并没有最好的收集器这一说,我们需要选择的是对具体应用最合适的收集器。

1、Serial收集器(用于新生代)

单线程,在进行垃圾收集时必须暂停其他所有的工作线程("Stop the World")。虚拟机运行在Client模式下的默认新生代收集器。简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程效率。

2、ParNew收集器(新生代)

ParNew收集器其实是Serial收集器的多线程版本,它是许多运行在Server模式下的虚拟机中首选的新生代收集器,因为除了Serial收集器外,目前只有它能与CMS收集器配合工作。

3、Parallel Scavenge收集器(“吞吐量优先”收集器)(新生代)

        使用复制算法,并行多线程,这些特点与ParNew一样,它的独特之处是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目的则是达到一个可控制的吞吐量(Throughput),即CPU用于运行用户代码的时间与CPU总消耗时间的比值,吞吐量=运行用户代码时间 /(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,吞吐量就是99%。

       停顿时间越短对于需要与用户交互的程序来说越好,良好的响应速度能提升用户的体验;

       高吞吐量可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适合在后台运算而不太需要太多交互的任务。

参数设置:

-XX:MaxGCPauseMillis 控制最大垃圾收集停顿时间。(大于0的毫秒数)停顿时间缩短是以牺牲吞吐量和新生代空间换取的。(新生代调的小,吞吐量跟着小,垃圾收集时间就短,停顿就小)。

-XX:GCTimeRatio 直接设置吞吐量大小,0



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有