智能合约语言 Solidity 教程系列10 您所在的位置:网站首页 function函数冲突 智能合约语言 Solidity 教程系列10

智能合约语言 Solidity 教程系列10

2023-03-13 11:36| 来源: 网络整理| 查看: 265

最新内容会更新在主站深入浅出区块链社区 原文链接:智能合约语言 Solidity 教程系列10 - 完全理解函数修改器

这是Solidity教程系列文章第10篇,带大家完全理解Solidity的函数修改器。 Solidity系列完整的文章列表请查看分类-Solidity。

写在前面

Solidity 是以太坊智能合约编程语言,阅读本文前,你应该对以太坊、智能合约有所了解, 如果你还不了解,建议你先看以太坊是什么

欢迎订阅区块链技术专栏阅读更全面的分析文章。

函数修改器(Function Modifiers)

函数修改器(Modifiers)可以用来改变一个函数的行为。比如用于在函数执行前检查某种前置条件。

如果熟悉Python的同学,会发现函数修改器的作用和Python的装饰器很相似。

修改器是一种可被继承合约属性,同时还可被继承的合约重写(override)。下面我们来看一段示例代码:

pragma solidity ^0.4.11; contract owned { function owned() public { owner = msg.sender; } address owner; // 定义了一个函数修改器,可被继承 // 修饰时,函数体被插入到 “_;” 处 // 不符合条件时,将抛出异常 modifier onlyOwner { require(msg.sender == owner); _; } } contract mortal is owned { // 使用继承的`onlyOwner` function close() public onlyOwner { selfdestruct(owner); } } contract priced { // 函数修改器可接收参数 modifier costs(uint price) { if (msg.value >= price) { _; } } } contract Register is priced, owned { mapping (address => bool) registeredAddresses; uint price; function Register(uint initialPrice) public { price = initialPrice; } // 需要提供payable 以接受以太 function register() public payable costs(price) { registeredAddresses[msg.sender] = true; } function changePrice(uint _price) public onlyOwner { price = _price; } }

上面onlyOwner就是定义的一个函数修改器,当用这个修改器区修饰一个函数时,则函数必须满足onlyOwner的条件才能运行,这里的条件是:必须是合约的创建这才能调用函数,否则抛出异常。 我们在实现一个可管理、增发、兑换、冻结等高级功能的代币文章中就使用了这个函数修改器。

多个修改器

如果同一个函数有多个修改器,他们之间以空格隔开,修饰器会依次检查执行。

在修改器中或函数内的显式的return语句,仅仅跳出当前的修改器或函数。返回的变量会被赋值,但执行流会在前一个修改器后面定义的"_"后继续执行, 如:

contract Mutex { bool locked; modifier noReentrancy() { require(!locked); locked = true; _; locked = false; } // 防止递归调用 // return 7 之后,locked = false 依然会执行 function f() public noReentrancy returns (uint) { require(msg.sender.call()); return 7; } }

修改器的参数可以是任意表达式。在此上下文中,所有的函数中引入的符号,在修改器中均可见。但修改器中引入的符号在函数中不可见,因为它们有可能被重写。

深入理解修改器的执行次序

再来看一个复杂一点的例子,来深入理解修改器:

pragma solidity ^0.4.11; contract modifysample { uint a = 10; modifier mf1 (uint b) { uint c = b; _; c = a; a = 11; } modifier mf2 () { uint c = a; _; } modifier mf3() { a = 12; return ; _; a = 13; } function test1() mf1(a) mf2 mf3 public { a = 1; } function test2() public constant returns (uint) { return a; } }

上面的智能合约运行test1()之后,状态变量a的值是多少, 是1, 11, 12,还是13呢? 答案是 11, 大家可以运行下test2获取下a值。

我们来分析一下 test1, 它扩展之后是这样的:

uint c = b; uint c = a; a = 12; return ; _; a = 13; c = a; a = 11;

这个时候就一目了然了,最后a 为11, 注意第5及第6行是不是执行的。

参考视频

我们也推出了目前市面上最全的视频教程:深入详解以太坊智能合约语言Solidity

目前我们也在招募体验师,可以点击链接了解。

参考文献

官方文档-Function Modifiers

如果你想和认识我,和我建立联系,欢迎加入知识星球深入浅出区块链,我会在星球为大家解答技术问题,作为星友福利,星友可加入我创建的区块链技术群,群内已经聚集了100多位区块链技术爱好者。

深入浅出区块链 - 系统学习区块链,打造最好的区块链技术博客。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有