婴儿癫痫性痉挛综合征介绍 您所在的位置:网站首页 dcx基因 婴儿癫痫性痉挛综合征介绍

婴儿癫痫性痉挛综合征介绍

#婴儿癫痫性痉挛综合征介绍| 来源: 网络整理| 查看: 265

包含了原先的West 综合征和有出现癫痫性痉挛但不符合West 综合征所有标准的婴儿(以前的West 综合征需要满足有癫痫性痉挛、脑电高度失律和发育落后三联征,而IESS可以缺少其中一条标准,比如可以没有明显的发育落后或者没有明显的高度失律)[36]

注:以前的West 综合征也常被作为婴儿痉挛(infantile spasms, IS)的同义词,但婴儿痉挛(用癫痫性痉挛来代替更合理,常见于West 综合征但并非为其所特有的癫痫发作类型)作为一种癫痫发作类型来描述更合适 [21]  

病因: 围产期或生后的损伤、中枢神经系统的感染、本身脑结构的异常、染色体异常(如 Down 综合征 、 Miller-Dieker 综合征 )或基因突变(如 ARX 、CALN1、 CASK 、CD99L2、 CDKL5 、CLCN6、CYFIP1、CYFIP2、HUWE1、KMT2D、 SPTAN1 、 STXBP1 、 TSC1 、 TSC2 、 TBC1D24 、 TCF4 、 SCN1A 、 SCN2A 、SETBP1、SIK1、ST3GAL3、 KCNQ2 、 GABRA1 、 GNAO1 、 KCNB1 、 FOXG1 、 FGF12 、GABRB1、GABRB2、 GABRB3 、GRIN1、 GRIN2A 、GRIN2B、GLYCTK、GNB1、GPT2、IARS2、MAG12、MEF2C、MTOR、MYO18A、ALG13、IQSEC2、WDR45、SCA2、SLC1A4、SLC25A22、SLC35A2、 UBA5 、ATP2A2、 ATP6V1A 、 GNB1 、 RARS2 、DOCK7、DNM1、NEDD4L、NDP、NOS3、NRXN1、 NSD1 、PHACTR1、PIGA、 PLCB1 、PTEN、PURA、WWOX、 DYNC1H1 、 DCX 、 PAFAH1B1 、RYR1、RYR2、RYR3、TAF1、TECTA、 TUBA1A 等)、代谢异常(如苯丙酮尿症、 吡哆醇(维生素B6)依赖性癫痫 、 Menkes病 等),各病因之间可有交叉重叠,如 TSC1 和 TSC2 基因的突变同时也可以引起脑部结构的异常[1-20, 23-35]。

发病年龄:多在生后3-12个月内发病(高峰期为生后5个月左右),有一部分患儿可从 大田原综合征 (OS)或其它早发性癫痫(常有局灶性发作)转变而来,也有一部分患儿在2-4岁左右会演变为 Lennox-Gastaut综合征 (LGS)。

发作特点:主要是癫痫性痉挛发作(多数在清醒中发生(睡醒后或入睡前较常见),当然睡眠中也可以有,突发的响声或触觉刺激容易诱发,但光刺激往往不会),可表现为屈曲型(多见,经典的表现为点头拥抱样动作),也可仅表现为伸展型(少见),或者屈曲-伸展混合型(多见,可以颈部、躯干及上肢屈曲,但下肢伸直),有时发作后常伴有哭闹或大笑,刻板成串发作的表现是一个很重要的特点,有时一些轻微的痉挛发作时可仅表现为反复短暂的眼球偏转、撇嘴、挤眼、轻微点头、肢体“紧一下”或瞬间凝视等,有时即使超高清的视频都很难看得清楚,但有些家属抱着的时候却往往能感受的到,做视频脑电时同时安装对应部位的肌电很重要。此外有些癫痫性痉挛发作也可以表现为双侧不对称,或仅累及一侧肢体或某一局限部位,这种的往往提示脑内可能有局部的致痫病灶。另外特别是病程后期有些也可以有孤立性的痉挛发作(这种临床上很难和肌阵挛以及短暂的强直发作鉴别,需结合同步脑电、肌电以及临床表现来综合判断)[22]。

脑电图表现:发作间期:脑电图可有 高度失律 (睡眠中往往更明显,可间断出现)。发作期:典型的 癫痫性痉挛发作 脑电表现可分为3个时相:1、短暂广泛性低-中波幅快波活动(有时可缺如或复合在下一时相的慢波中);2、广泛性高波幅多位相慢波,有时慢波的下降支可有一个非常深的正向偏转(对应痉挛收缩的症状);3、弥漫性电压压低(有时可不明显)。在1-2岁后,有一部分患儿脑电可演变为广泛同步的棘(尖)慢综合波发放,睡眠中常有快节律爆发,提示可能转变为 Lennox-Gastaut 综合征 (LGS),也有一部分患儿在高度失律消退后,遗留枕区的局限性的尖(棘)慢综合波,另有一部分后期也可以转变为其它部位的局灶性放电,也存在一部分恢复正常的。

头颅磁共振表现:部分可有脑结构的异常,也可以是正常的。

发育情况:整体发育落后(个体之间存在一定差异,主要还是和本身病因密切相关,也存在少数控制住了后面发育下去也都还好的有时也能见到)。

治疗

2022年英国国家卫生和临床优化研究所(NICE)癫痫指南

一线治疗:给予大剂量泼尼松( 用量计算 )联合 氨己烯酸 口服(对于激素有高风险的患儿以及 结节性硬化 所致的婴儿癫痫性痉挛综合征可仅给予 氨己烯酸 单药治疗)(注:2012年版的NICE癫痫指南当时还有提到的还是类固醇(泼尼松或tetracosactide(ACTH的类似物)或氨己烯酸作为一线治疗,最新的2022年版已未再提及ACTH,直接是大剂量泼尼松联合氨己烯酸作为一线治疗))。

二线治疗:对于一线治疗不成功的,可以考虑以下药物作为单药或添加治疗:生酮饮食、 左乙拉西坦 、 硝西泮 、 丙戊酸钠 、 托吡酯 。 

2015年中国临床诊疗指南癫痫病分册

一线药物:类固醇(包括ACTH( 用量计算 )和泼尼松( 用量计算 ))、 氨己烯酸 。

可考虑添加的药物: 托吡酯 、 丙戊酸 、 氯硝西泮 、 拉莫三嗪 。

2022年国际抗癫痫联盟(ILAE)关于婴儿癫痫性痉挛综合征诊断标准 [36]:

必须具备的条件:屈肌、伸肌或混合性癫痫痉挛,常成串出现;发作间期脑电可表现为高度失律、多灶或局灶性癫痫样放电(可能在痉挛发作出现后很快看到);发病年龄在1-24个月龄(虽然癫痫性痉挛发作出现在更晚年龄的也有,但这种不能算婴儿痉挛综合征);痉挛发作出现后出现发育减慢,但在病程早期可能不明显(对于已经存在严重发育障碍的儿童中很难确定)。

需警惕可能不是的情况:发作间期脑电图正常或表现为爆发-抑制图形;在1-2个月起病。

排除标准:对于疑似痉挛发作的发作期脑电图表现为正常。

参考文献

Arya, R., M. Kabra, and S. Gulati, Epilepsy in children with Down syndrome. Epileptic Disord, 2011. 13(1): p. 1-7. Stromme, P., et al., Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX.Brain Dev, 2002. 24(5): p. 266-8. Studtmann, C., L.E.W. LaConte, and K. Mukherjee, Comments on: A de novo in-frame deletion of CASK gene causes early onset infantile spasms and supratentorial cerebral malformation in a female patient. Am J Med Genet A, 2019. 179(12): p. 2514-2516. Krey, I., et al., Genotype-phenotype correlation on 45 individuals with West syndrome. Eur J Paediatr Neurol, 2020. 25: p. 134-138. Nonoda, Y., et al., Progressive diffuse brain atrophy in West syndrome with marked hypomyelination due to SPTAN1 gene mutation.Brain Dev, 2013. 35(3): p. 280-3. Stamberger, H., et al., STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy.Neurology, 2016. 86(10): p. 954-62. Miyata, H., et al., Isolated cortical tuber in an infant with genetically confirmed tuberous sclerosis complex 1 presenting with symptomatic West syndrome. Neuropathology, 2021. 41(1): p. 58-64. Hsieh, D.T., M.M. Jennesson, and E.A. Thiele, Epileptic spasms in tuberous sclerosis complex. Epilepsy Res, 2013. 106(1-2): p. 200-10. McTague, A., et al., The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol, 2016. 15(3): p. 304-16. Wolff M., et al., Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140:1316-1336. Kato, M., et al., Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation.Epilepsia, 2013. 54(7): p. 1282-7. Kodera, H., et al., De novo GABRA1 mutations in Ohtahara and West syndromes.Epilepsia, 2016. 57(4): p. 566-73. Muir, A.M., et al., Genetic heterogeneity in infantile spasms. Epilepsy Res, 2019. 156: p. 106181 Marini, C., et al., Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations. Neurol Genet, 2017. 3(6): p. e206. Striano, P., et al., West syndrome associated with 14q12 duplications harboring FOXG1. Neurology, 2011. 76(18): p. 1600-2. Oda, Y., et al., Entire FGF12 duplication by complex chromosomal rearrangements associated with West syndrome. J Hum Genet, 2019. 64(10): p. 1005-1014. Shi, Y.W., et al., Synaptic clustering differences due to different GABRB3 mutations cause variable epilepsy syndromes. Brain, 2019. 142(10): p. 3028-3044. Kadwa, R.A., Novel Mutation in ATP6V1A Gene with Infantile Spasms in an Indian Boy. Neuropediatrics, 2020. 51(4): p. 292-294. Endo, W., et al., Phenotype-genotype correlations in patients with GNB1 gene variants, including the first three reported Japanese patients to exhibit spastic diplegia, dyskinetic quadriplegia, and infantile spasms. Brain Dev, 2020. 42(2): p. 199-204. Ngoh, A., et al., RARS2 mutations in a sibship with infantile spasms. Epilepsia, 2016. 57(5): p. e97-e102. Panayiotopoulos.  癫痫综合征及临床治疗.  北京 : 人民卫生出版社, 2012. 刘晓燕.  临床脑电图学. 第2版.  北京 : 人民卫生出版社, 2017. Kato, M., A new paradigm for West syndrome based on molecular and cell biology. Epilepsy Res, 2006. 70 Suppl 1: p. S87-95. Brock, S., W.B. Dobyns, and A. Jansen, PAFAH1B1-Related Lissencephaly/Subcortical Band Heterotopia, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA). Pavone, P., et al., West syndrome: a comprehensive review. Neurol Sci, 2020. 41(12): p. 3547-3562. Sass, J.O., et al., D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK). Hum Mutat, 2010. 31(12): p. 1280-5. Boutry-Kryza, N., et al., Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur J Med Genet, 2015. 58(2): p. 51-8. Conroy, J., et al., Novel European SLC1A4 variant: infantile spasms and population ancestry analysis. J Hum Genet, 2016. 61( 8 ): p. 761-4. Arnadottir, G.A., et al., Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters. BMC Med Genet, 2017. 18(1): p. 103. Takezawa, Y., et al., Novel IARS2 mutations in Japanese siblings with CAGSSS, Leigh, and West syndrome. Brain Dev, 2018. 40(10): p. 934-938. Marakhonov, A.V., et al., Mutation in PHACTR1 associated with multifocal epilepsy with infantile spasms and hypsarrhythmia. Clin Genet, 2021. 99(5): p. 673-683. He, H., et al., West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction. Mol Neurobiol, 2021. 58(6): p. 2990-2999. Endo, W., et al., Phenotype-genotype correlations in patients with GNB1 gene variants, including the first three reported Japanese patients to exhibit spastic diplegia, dyskinetic quadriplegia, and infantile spasms. Brain Dev, 2020. 42(2): p. 199-204. Peng, J., et al., Novel West syndrome candidate genes in a Chinese cohort. CNS Neurosci Ther, 2018. 24(12): p. 1196-1206. Shimojima, K., et al., Infantile spasms related to a 5q31.2-q31.3 microdeletion including PURA. Hum Genome Var, 2018. 5: p. 18007. Zuberi, S.M., et al., ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia, 2022. 63(6): p. 1349-1397.


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有