基于关联规则算法的电商数据挖掘 您所在的位置:网站首页 aprioiri算法 基于关联规则算法的电商数据挖掘

基于关联规则算法的电商数据挖掘

2023-03-30 02:02| 来源: 网络整理| 查看: 265

大家好,我是Peter~

本文是基于机器学习的关联规则方法对IC电子产品的数据挖掘,主要内容包含:

数据预处理:针对数据去重、缺失值处理、时间字段处理、用户年龄分段等词云图制作:不同用户对不同品牌brand和种类category_code的偏好关联规则挖掘:针对不同性别、不同品牌的关联信息挖掘

本文关键词:电商、关联规则、机器学习、词云图

数据基本信息导入数据

In 1:

import pandas as pd import numpy as np # 显示所有列 # pd.set_option('display.max_columns', None) # 显示所有行 # pd.set_option('display.max_rows', None) # 设置value的显示长度为100,默认为50 # pd.set_option('max_colwidth',100) import time import os from datetime import datetime import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline #设置中文编码和负号的正常显示 plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False import missingno as ms from pyecharts.globals import CurrentConfig, OnlineHostType from pyecharts import options as opts # 配置项 from pyecharts.charts import Bar, Scatter, Pie, Line,Map, WordCloud, Grid, Page # 各个图形的类 from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType,SymbolType import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots # 画子图 import jieba from snownlp import SnowNLP from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler import warnings warnings.filterwarnings("ignore")

In 2:

# 数据中存在中文,指定读取的编码格式 df = pd.read_csv("ic_sale.csv", encoding="gb18030", # windows系统需要指定类型;mac不需要 converters={"order_id":str,"product_id":str,"category_id":str,"user_id":str} ) df.head()

Out2:

基本信息

In 3:

# 1、数据shape df.shape

Out3:

(564169, 11)

In 4:

# 2、数据字段类型 df.dtypes

Out4:

event_time object order_id object product_id object category_id object category_code object brand object price float64 user_id object age int64 sex object local object dtype: object

In 5:

# 3、数据描述统计信息 df.describe()

Out5:

price

age

count

564169.000000

564169.000000

mean

208.269324

33.184388

std

304.559875

10.122088

min

0.000000

16.000000

25%

23.130000

24.000000

50%

87.940000

33.000000

75%

277.750000

42.000000

max

18328.680000

50.000000

In 6:

# 4、总共多少个不同客户 df["user_id"].nunique()

Out6:

6908数据预处理数据去重处理

In 7:

df.shape # 去重前

Out7:

(564169, 11)

In 8:

df.drop_duplicates(ignore_index=True,inplace=True)

In 9:

df.shape # 去重后

Out9:

(561214, 11)特征信息

In 10:

stats = [] for col in df.columns: stats.append((col, df[col].nunique(), round(df[col].isnull().sum() * 100 / df.shape[0], 3), round(df[col].value_counts(normalize=True, dropna=False).values[0] * 100,3), df[col].dtype) ) stats_df = pd.DataFrame(stats, columns=['特征名', '属性个数', '缺失值占比', '最大属性占比', '特征类型']) stats_df.sort_values('缺失值占比', ascending=False, ignore_index=True)缺失值处理

In 11:

df = df[df["price"] > 0]

In 12:

df.isnull().sum()

Out12:

event_time 0 order_id 0 product_id 0 category_id 0 category_code 128662 brand 27132 price 0 user_id 0 age 0 sex 0 local 0 dtype: int64

In 13:

ms.bar(df,color="red") # 缺失值可视化 plt.show()

最后直接填充缺失值:missing

In 14:

df.fillna("missing",inplace=True) # 填充missing时间字段处理

In 15:

df["event_time"].value_counts()

Out15:

1970-01-01 00:33:40 UTC 1302 2020-04-09 16:30:01 UTC 51 2020-04-08 16:30:01 UTC 49 2020-04-06 16:30:01 UTC 46 2020-04-05 16:30:01 UTC 44 ... 2020-07-28 13:10:35 UTC 1 2020-07-28 13:10:21 UTC 1 2020-07-28 13:09:37 UTC 1 2020-07-28 13:08:23 UTC 1 2020-08-13 17:16:24 UTC 1 Name: event_time, Length: 389813, dtype: int64

从上面的结果中看到:1970-01-01 00:33:40最多,其实就是时间字段的缺失值

In 16:

# 去掉最后的UTC df["event_time"] = df["event_time"].apply(lambda x: x[:19]) # 时间数据类型转化:字符类型---->指定时间格式 df['event_time'] = pd.to_datetime(df['event_time'], format="%Y-%m-%d %H:%M:%S") # 提取多个时间相关字段 # df['month']=df['event_time'].dt.month # df['day'] = df['event_time'].dt.day # df['dayofweek']=df['event_time'].dt.dayofweek # df['hour']=df['event_time'].dt.hour用户年龄分段

In 17:

# 不同性别下的年龄分布 fig = px.box(df,y=["age"], color="sex") fig.show()# 不同年龄段人数统计 fig = plt.figure(figsize=(12,6)) sns.countplot(df["age"]) plt.title("Counts of Different Age") plt.show()

针对年龄字段的分箱操作:

In 19:

df["age"] = pd.cut(df["age"],bins=4,precision=0) df["age"] # 分段之后的age字段显示

Out19:

0 (16.0, 24.0] 1 (33.0, 42.0] 2 (24.0, 33.0] 3 (16.0, 24.0] 4 (16.0, 24.0] ... 561209 (16.0, 24.0] 561210 (16.0, 24.0] 561211 (16.0, 24.0] 561212 (16.0, 24.0] 561213 (16.0, 24.0] Name: age, Length: 561175, dtype: category Categories (4, interval[float64, right]): [(16.0, 24.0] < (24.0, 33.0] < (33.0, 42.0] < (42.0, 50.0]]不同地区用户的消费水平对比

In 22:

fig = px.scatter(df[df["brand"] != "missing"], # 除去missing数据 # x="local", y="price", facet_col="age", color="local", size="price" ) fig.show()不同年龄段和性别的品牌偏好

In 23:

age_brand = df.groupby(["age","sex","brand"]).size().reset_index().rename(columns={0:"number"}) age_brand.head()

Out23:

age

sex

brand

number

0

(16.0, 24.0]

a-case

32

1

(16.0, 24.0]

acana

0

2

(16.0, 24.0]

accesstyle

3

3

(16.0, 24.0]

action

0

4

(16.0, 24.0]

activision

3

In 24:

# 实现排序功能-降序 age_brand = age_brand.sort_values(["age","number"],ascending=[True,False],ignore_index=True) age_brand.head()

Out24:

age

sex

brand

number

0

(16.0, 24.0]

samsung

11884

1

(16.0, 24.0]

samsung

11882

2

(16.0, 24.0]

apple

4561

3

(16.0, 24.0]

apple

4283

4

(16.0, 24.0]

missing

3354

In 25:

# 条件筛选 age_brand = age_brand.query("number > 0 & brand != 'missing'")

In 26:

fig = px.treemap( age_brand, # 传入数据 path=[px.Constant("all"),"age","sex","brand"], # 传递数据路径 values="number" # 数值显示 ) fig.update_traces(root_color="lightskyblue") fig.update_layout(margin=dict(t=30,l=30,r=25,b=30)) fig.show()品牌数量词云图

In 27:

age_brand.head()

Out27:

age

sex

brand

number

0

(16.0, 24.0]

samsung

11884

1

(16.0, 24.0]

samsung

11882

2

(16.0, 24.0]

apple

4561

3

(16.0, 24.0]

apple

4283

6

(16.0, 24.0]

ava

3317

In 28:

brand_list = age_brand["brand"].value_counts().reset_index() brand_list.columns=["word","number"] brand_list.head(10)

Out28:

word

number

0

samsung

8

1

darina

8

2

huion

8

3

aquapick

8

4

amigami

8

5

sjcam

8

6

rockstar

8

7

franke

8

8

bridgestone

8

9

tailg

8

In 29:

information_zip = [tuple(z) for z in zip(brand_list["word"].tolist(), brand_list["number"].tolist())] # 绘图 c = ( WordCloud() .add("", information_zip, word_size_range=[20, 80], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="品牌词云图")) ) c.render_notebook()不同品牌的不同种类category_codecategory_code处理

查看有多少种不同的category_code和对应的数量,使用value_counts()方法:

In 30:

df["category_code"].value_counts()

Out30:

missing 128662 electronics.smartphone 101502 computers.notebook 25917 appliances.kitchen.refrigerators 20296 electronics.audio.headphone 20049 ... kids.swing 8 country_yard.watering 5 sport.snowboard 3 apparel.costume 2 apparel.shoes 2 Name: category_code, Length: 124, dtype: int64

结论:除去missing部分,最多的是electronics.smartphone,即:电子智能手机,其次就是电脑笔记本

In 31:

fig = px.bar(df["category_code"].value_counts()[1:30]) # 前30个category_code fig.show()

只选取需要的字段:

In 32:

df = df[df["category_code"] != "missing"] # 去除missing部分 df = df[["category_code", "brand","age", "sex", "local"]]

将category_code字段进行切割处理:

In 33:

df["category_code"] = df["category_code"].apply(lambda x: x.split(".") if "." in x else [x]) df.head()

Out33:

category_code

brand

age

sex

local

0

electronics, tablet

samsung

(16.0, 24.0]

海南

1

electronics, audio, headphone

huawei

(33.0, 42.0]

北京

3

furniture, kitchen, table

maestro

(16.0, 24.0]

重庆

4

electronics, smartphone

apple

(16.0, 24.0]

北京

5

appliances, kitchen, refrigerators

lg

(16.0, 24.0]

北京

category_code词云图

In 34:

data = df["category_code"].tolist() data[:3]

Out34:

[['electronics', 'tablet'], ['electronics', 'audio', 'headphone'], ['furniture', 'kitchen', 'table']]

In 35:

import itertools # 通过chain方法从可迭代对象中生成;展开成列表 sum_data = list(itertools.chain.from_iterable(data)) sum_data[:10]

Out35:

['electronics', 'tablet', 'electronics', 'audio', 'headphone', 'furniture', 'kitchen', 'table', 'electronics', 'smartphone']

In 36:

category_code_number = pd.value_counts(sum_data).to_frame().reset_index() category_code_number.columns=["category_code","number"] category_code_number.head()

Out36:

category_code

number

0

electronics

156709

1

appliances

150331

2

kitchen

107852

3

smartphone

101502

4

computers

76877

In 37:

information_zip = [tuple(z) for z in zip(category_code_number["category_code"].tolist(), category_code_number["number"].tolist())] # 绘图 c = ( WordCloud() .add("", information_zip, word_size_range=[20, 80], shape=SymbolType.DIAMOND) .set_global_opts(title_opts=opts.TitleOpts(title="商品种类词云图")) ) c.render_notebook()基于关联规则建模基于性别sex查找频繁项集-male

In 38:

male = df[df["sex"] == "男"] male.head()

Out38:

category_code

brand

age

sex

local

3

furniture, kitchen, table

maestro

(16.0, 24.0]

重庆

4

electronics, smartphone

apple

(16.0, 24.0]

北京

5

appliances, kitchen, refrigerators

lg

(16.0, 24.0]

北京

6

appliances, personal, scales

polaris

(24.0, 33.0]

广东

17

appliances, kitchen, kettle

tefal

(33.0, 42.0]

广东

In 39:

import efficient_apriori as ea male_list = male["category_code"].tolist() # itemsets:频繁项 rules:关联规则 itemsets, rules = ea.apriori(male_list, min_support=0.005, min_confidence=1 )一个频繁项

In 40:

len(itemsets[1])

Out40:

60

In 41:

itemsets[1] # 一个频繁项集# 字典的值value的降序排列 dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))二个频繁项

In 43:

len(itemsets[2]) # 总个数

Out43:

84

In 44:

# 两个频繁项集 dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))三个频繁项

In 45:

len(itemsets[3]) # 总个数

Out45:

32

In 46:

# 三个频繁项集 dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))

Out46:

{('appliances', 'kitchen', 'refrigerators'): 10209, ('audio', 'electronics', 'headphone'): 10154, ('electronics', 'tv', 'video'): 8876, ('appliances', 'environment', 'vacuum'): 8069, ('appliances', 'kitchen', 'washer'): 7235, ('appliances', 'kettle', 'kitchen'): 6389, ('computers', 'mouse', 'peripherals'): 6359, ('furniture', 'kitchen', 'table'): 5626, ('appliances', 'hood', 'kitchen'): 4487, ('appliances', 'blender', 'kitchen'): 4439, ('appliances', 'kitchen', 'microwave'): 3830, ('air_conditioner', 'appliances', 'environment'): 3806, ('appliances', 'personal', 'scales'): 3423, ('computers', 'network', 'router'): 3318, ('components', 'computers', 'hdd'): 2598, ('appliances', 'kitchen', 'meat_grinder'): 2361, ('components', 'computers', 'cpu'): 2055, ('appliances', 'kitchen', 'oven'): 1958, ('appliances', 'environment', 'fan'): 1952, ('computers', 'keyboard', 'peripherals'): 1940, ('computers', 'peripherals', 'printer'): 1802, ('appliances', 'environment', 'water_heater'): 1753, ('computers', 'monitor', 'peripherals'): 1733, ('components', 'computers', 'cooler'): 1717, ('cabinet', 'furniture', 'living_room'): 1550, ('chair', 'furniture', 'kitchen'): 1513, ('appliances', 'hair_cutter', 'personal'): 1388, ('air_heater', 'appliances', 'environment'): 1341, ('appliances', 'dishwasher', 'kitchen'): 1329, ('furniture', 'living_room', 'shelving'): 1314, ('appliances', 'kitchen', 'mixer'): 1288, ('construction', 'screw', 'tools'): 1194}查找频繁项集-female

In 47:

female = df[df["sex"] == "女"] female.head()

Out47:

category_code

brand

age

sex

local

0

electronics, tablet

samsung

(16.0, 24.0]

海南

1

electronics, audio, headphone

huawei

(33.0, 42.0]

北京

7

electronics, video, tv

samsung

(16.0, 24.0]

北京

8

computers, components, cpu

intel

(42.0, 50.0]

浙江

10

computers, notebook

asus

(42.0, 50.0]

广东

In 48:

import efficient_apriori as ea female_list = male["category_code"].tolist() # itemsets:频繁项 rules:关联规则 itemsets, rules = ea.apriori(female_list, min_support=0.005, min_confidence=1 )一个频繁项

In 49:

len(itemsets[1]) # 总个数

Out49:

60

In 50:

# 一个频繁项集 dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))二个频繁项

In 51:

# 两个频繁项集 dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))三个频繁项

In 52:

# 三个频繁项集 dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))基于品牌brand

In 53:

brand_category = df.groupby(["brand"])["category_code"].sum().reset_index() brand_category# 去重功能-set brand_category["category_code"] = brand_category["category_code"].apply(lambda x: list(set(x))) brand_categoryimport efficient_apriori as ea brand_list = brand_category["category_code"].tolist() # itemsets:频繁项 rules:关联规则 itemsets, rules = ea.apriori( brand_list, min_support=0.05, min_confidence=1 ) # 三个频繁项集 dict(sorted(itemsets[3].items(), key=lambda x: x[1], reverse=True))# 两个频繁项集 dict(sorted(itemsets[2].items(), key=lambda x: x[1], reverse=True))# 一个频繁项集 dict(sorted(itemsets[1].items(), key=lambda x: x[1], reverse=True))结论从消费用户的年龄来看,平均在33岁,属于主力消费且有一定经济实力的人群;从用户的产品偏好来看,用户主要喜欢:三星、苹果、ava(主营儿童产品,比如儿童头盔、摩托车)、tefal(特福,主要家电产品,比如蒸锅、不粘锅等)从用户搜索的产品种类来看,用户更关注的是smartphone、kitchen、electronics;也就说:智能手机、厨房用品和电子产品是用户的关注点从关联规则挖掘到的信息来看:男性/女性的关联产品信息可能是electronics与smartphone,appliances与kitchen,或者computers与notebook在同一个品牌中,appliances和kitchen;以及audio--->electronics--->headphone是主要关联产品


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有