高压电动机的纵联差动保护

您所在的位置:网站首页 高压电机差动保护接线原理 高压电动机的纵联差动保护

高压电动机的纵联差动保护

2024-07-18 04:01:56| 来源: 网络整理| 查看: 265

高压电动机的纵联差动保护

2010-03-19 01:28

对2000kW及以上的高压电动机,或电流速断保护灵敏度不能满足要求的高压电动机,且电动机的中性点侧有引出线时,可采用差动保护作为主保护。5000kW及以下的电动机差动保护一般按两相式接线,可由两只DL-11型继电器组成,其原理接线如图7.6.2(a)所示。对5000kW以上电动机,一般采用BCH-2型差动继电器组成三相式接线,原理接线如图7.6.2(b)所示,均作用于电动机出口断路器跳闸。

当采用DL-11型电流继电器组成差动保护时,为躲开电动机启动时非周期分量电流的影响,可利用一个带0.1s延时的出口中间继电器动作于高压断路器跳闸;当采用BCH-2型继电器时,建议用高灵敏度的差动保护,其原理接线如图7.6.2(b)所示。继电器的差动线圈接在相应相的差值回路中,各相的平衡线圈均串接在中性线回路中,且与差动线圈呈反极性连接,要求在电流互感器二次回路断线时,保护装置不误动作。当保护区内发生两相或三相短路时,短路电流将反映到两个或三个差动线圈,而平衡线圈则无短路电流流过,所以只要在差动线圈中有较小的故障电流流过,差动继电器就能动作。

电动机差动保护的动作电流应按躲过电动机的额定电流来整定,继电器的动作电流为

(7.6.7)

式中 Krel——可靠系数,对DL型继电器取Krel=1.2~2;对BCH-2型继电器接成的高灵敏度接线Krel=0.55 灵敏度校验同样可按式(7.6.6)进行。

电动机差动保护的灵敏度可按下式校验

(7.6.6)

(2).min——电动机端子处最小两相短路电流值。

式中 I

k

纵联差动保护

6.2 纵联差动保护 6.2.1 基本原理 6.2.1.1 定义 差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。 6.2.1.2 基本原理 变压器纵差保护是按照循环电流原理构成的 变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2• ''I =0,保证纵差保护不动作。但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。 (a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布 (图6.4 变压器纵差保护原理接线图) 在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2• ''I ,即 2•'I =2•''I = 11i n I •'=21i n I • '' (6.1) 即 12i i n n =1 1•• '''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。 若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为 K I •=2•'I -2• ''I =0 (6.3) 当区内故障时,2•''I 反向流出,则流入差动继电器的电流为

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

高压电动机保护

高压电动机的继电保护 高压电动机的定子绕组和其引出线,一般应装设电流速断保护。对生产过程中容易发生过载的电动机,应装设过负荷保护,过负荷保护可根据负荷特性带时限作用于信号、跳闸或自动减负荷装置。 对于高压电动机容量在2000kW以上的,在电流速断不能满足灵敏度要求时, DL型或GL 流速断保护,过负荷保护就可以利用GL型继电器的反时限过电流装置来实现过负荷保护。 过负荷的动作电流按躲过电动机的最大启动电流来整定。过负荷保护的动作时间应大于电动机的启动时间,一般取10-16s,如用GL型继电器,可取两倍动作电流时的时间12-16s。

三、高压电机的低电压保护-当电压互感器一次测隔离开关断开时,低电压保护即退出工作,防止无动作。对保护动作不重要的电动机,电压继电器按60%-70%额定电压整定,动作时间取0.5s;对动作较为重要的电动机,电压继电器按30%-50%额定电压整定,动作时间取5-10s。 四、高压电动机的差动保护-在小电流接地的供电系统中,可以采用两相 In来整 作。 护。 1 速断。 1.1、电机启动过程速断保护按躲过电机的最大启动电流整定。 动作电流?Idz>=Ih, Ih=K1*K2*In2 K1为可靠系数,取1.5 K2为电机启动电流倍数,一般取7

In2为电机一次额定电流/CT变比 出口时间:0s 1.2、启动后按躲过母线出口三相短路时的电动机反馈电流计算 1.2.1、对于真空断路器 动作电流Idz>=IL 2 3、过热保护 4、接地保护 5、长启动保护 电压为3kV以上的异步电动机和同步电动机,对下列故障及异常运行方式,应装设相应的保护: 1、??定子绕组相间短路;

高压电机差动保护原理及误动作故障分析

高压电机差动保护原理及误动作故障分析 电机差动保护主要应用到大型的高压电机当中,一旦出现故障就会造成电机的损坏,给正常的生产带来影响,造成巨大的经济损失。因此,要做好高压电机差动保护。 标签:高压电机;差动保护;原理;误动;故障排除 1 前言 高压电机差动保护是电机设备保护的关键,对于设备的稳定运行提供有效的保障。 2 差动保护的原理 差动保护是大型高压电气设备广泛采用的一种保护方式。就水利水电工程而言,它主要用来保护10KV及以上高压电机或具有6个引出线的重要电机的主要保护措施。当电流速断保护不能满足灵敏度要求时,通常装设纵差保护作为电机相间短路故障的主保护。差动保护是基于被保护设备的短路故障而设。当电机绕组发生相间短路故障时,它能快速反应并动作,使出口断路器在第一时间跳闸,从而起到保护电机并防止故障进一步扩大的作用。它的基本原理是:在电机的进口(高压开关柜内)和出口(电机中性点柜内)分别装设型号相同、变比相同的电流互感器,电流互感器二次侧按循环电流法接线。即两端电流互感器一、二次侧的异极性相连,并在两连线之间并联接如差动继电器。继电器线圈流过的电流是两侧电流互感器二次侧电流之差。在正常情况下,电机首尾两端电流相等,即流入电机的电流与流出电机的电流差值为零,也就是电机首尾两端电流互感器二次侧电流差值为零,此时电机运行正常,差动保护不动作。如电机绕组发生相间短路故障,此时,流入电机的电流远远大于流出电机的电流,即电机首尾两端电流互感器二次侧电流存在差值,此时差动继电器动作,从而驱使高压开关柜内的断路器跳闸,达到保护电机的目的。在科学日新月异发展的今天,过去那种以模拟继电器为主的保护方式,早已被数字综合保护装置所代替,且稳定性、准确性和可靠性大大提高,以及安装、调试的方法也大为简单,但差动保护的基本原理却是相同的。 3 差动保护误动的原因 实际调试过程中,尤其是在高压电机初次启动时,在电机内部没有任何故障的情况下,差动保护会在电机启动的瞬间动作,造成电机启动失败。主要有以下3方面原因: 3.1差动保护的电流整定值计算不恰当,即差动保护的电流整定值小于电机启动的峰值电流。

电动机保护

电动机保护 第一节电动机的故障、异常运行状态及保护方式 在电力生产和工矿企业中,大量地使用电动机。发电厂厂用机械大部分用的是异步电动机,但厂用低速磨煤机、大容量给水泵以及水泵房循环水泵等则采用同步电动机。以下介绍的内容主要以异步电动机为主。电动机的安全运行对确保发电厂以至整个工业生产的安全、经济运行都有很重要的意义,因此应根据电动机的类型、容量及其在生产中的作用,装设相应的保护装置。但是,由于实际使用的电动机数量很多,且大部分为中、小型,因而不可能在每一台电动机上都配置性能完善的保护装置,故在进行电动机保护配置时,除考虑继电保护的四个基本要求外,还应该从技术、经济上衡量,力求简单、可靠。 电动机的主要故障有定子绕组的相间短路、单相接地以及同一相绕组的匝间短路。 电动机发生相间短路故障时,不仅故障的电动机本身会遭受严重损伤,同时还将使供电电压显著下降,影响其他用电设备的正常工作,在发电厂中甚至可能造成停机、停炉的全厂停电事故。因此,对电动机定子绕组及其引出线的相间短路,必须装设相应的保护装置,以便及时地将故障电动机切除。通常,对于容量在75kW及以下的低压小容量电动机,可采用熔断器或低压断路器(自动空气开关)的短路脱扣器作为相间短路保护;容量较大的高压电动机,则装设由电磁型电流继电器或感应型电流继电器构成的电流速断作为相间短路保护;当电动机的容量在2000kW以上,或者很重要但电流速断灵敏度不能满足要求时,若具有六个引出线,可装设纵差保护。 单相接地对电动机的危害取决于供电网络中性点的运行方式。对于380/220V的低压电动机,其电源中性点一般直接接地,故发生单相接地时,将产生很大的短路电流,因而也应尽快切除,故应该装设快速动作于跳闸的单相接地保护。为了简化,一般由相间保护采用三相式接线即可;灵敏度不能满足要求的重要电动机,才考虑采用零序保护。而对于3—10kV 的高压电动机,由于所在供电网络属于小电流接地系统,电动机单相接地后,只有电网的电容电流流过故障点,其危害一般较小。《规程》规定,当接地电容电流大于5A时,应装设接地保护,当接地电容电流大于10A时,保护一般作用于跳闸。 同一相绕组的匝间短路将破坏电动机运行的对称性,并使故障相的电流增大,增大的程度与被短路的匝数有关,最严重情况为一相绕组全部被短接,此时电动机可能被损坏。但由于目前尚未找到既简单又性能完善的方法反应匝间短路,因此在电动机上一般不装设专用的匝间短路保护。 电动机的异常运行状态主要是各种形式的过负荷。引起电动机过负荷的原因有:所带机械负荷过大;电源电压或频率下降而引起的转速下降;一相断线造成两相运行;电动机启动和自启动时间过长等等。长时间的过负荷将使电动机绕组温升超过允许值,使绝缘老化速度加速,甚至发展成故障。因此,根据电动机的重要程度、过负荷的可能性以及异常运行状态等情况,应装设相应的过负荷保护作用于信号、自动减负荷或跳闸。具体配置情况如下:容量在100kW及以下的低压电动机,可利用磁力启动器中的热继电器或低压断路器中的热脱

高压线路纵联保护基本原理

概述输电线的纵联保护,就是用某种通信通道(简称通道)将输电线两端或 各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在个线路范围内还是在线路范围之外,从而决定是否切断被保护线路。因此,理论上这种纵联保护具有绝对的选择性。 基本原理利用比较两侧的电流相位或功率方向判断故障是否在区内按照纵联保护构成原理分类 单元式纵联保护 将输电线看作一个被保护单元如同变压器和发电机一样。 这种保护方式是从输电线的每一端采集电气量的测量值,通过通信通道传送到其他各端。在各端将这些测量值进行直接比较,以决定保护装置是否应该动作跳闸。如比较 电流相位的相位差动保护、比较电流波形(幅值和相位)的电流差动保护 非单元式保护 也是在输电线各端对某种或某几种电气量进行测量,但并下将测量值直接传送到其他各端,直接进行比较。而是传送根据这些测量值得到的对故障性质(如故障方向、故障位置等)的判断结果。如方向比较式纵联保护、距离纵联保护等 按照传送的通信信号分类 任何纵联保护都是依靠通信通道传送的某种信号来判断故障的位置是否在被保线路内。因此信号的性质和功能在很大程度上决定了保护的性能。 信号按其性质可分为三种; 闭锁信号、允许信号和跳闸信号。 这三种信号可用任一种通信通道产生和传送。 闭锁信号 以两端线路为例,所谓闭锁信号就是指:“收不到这种信号是保护动作跳闸的必要条件”。就是当发生外部故障时,由判定为外部故障的一端保护装置发出闭锁信号,将两端的保护闭锁。而当内部故障时,两端均不发、因而也收不到闭锁信号,保护即可动作于跳闸。 允许信号 所谓允许信号是指:“收到这种信号是保护动作跳闸的必要条件”。因此,当内部故障是,两端保护应同时向对端发出允许信号,使保护装置能够动作于跳闸。而当外部故障时,则因接近故障点端判出故障在反方向而不发允许信号,对端保护不能跳闸,本端则因判出故障在反方向也不能跳闸。 跳闸信号 跳闸信号是指:“收到这种信号是保护动作于跳闸的充要条件”。实现这种保护时,实际上是利用装设在每一端的瞬时电流速断、距离I段或零序电流瞬时速断等保护,当其保护范围内部故障而动作十跳闸的同时,还向对端发出跳

纵联和横联差动保护的原理

纵联和横联差动保护的原理~! 电网的纵联差动保护电流、电压和距离保护属于单端保护,不能瞬时切除保护范围内任何地点的故障。这就不能满足高压输电线路系统稳定的要求。如何保证瞬时切除高压输电线路故障?解决办法:采用线路纵差动保护线路纵差动保护是利用比较被保护元件始末端电流的大小和相位的原理来构成输电线路保护的。当在被保护范围内任一点发生故障时,它都能瞬时切除故障。-、纵联差动保护的工作原理电网的纵联差动保护反应被保护线路首末两端电流的大小和相位,保护整条线路,全线速动。纵联差动保护原理接线如下图所示。,即为电流互感器二次电流的差。差回路:继电器回路。正常'流入继电器的电流为I2—I2运行:流入差回路的电流外部短路:流入差回路中的电流为指出:被保护线路在正常运行及区外故障时,在理想状态下,流入差动保护差回路中的电流为零。实际上,差回路中还有一个不平衡电流Ibp。差动继电器KD的起动电流是按大于不平衡电流整定的,所以,在被保护线路正常及外部故障时差动保护不会动作。内部短路:流入差动保护回路的电流为被保护线路内部故障时,流入差回路的电流远大于差动继电器的起动电流,差动继电器动作,瞬时发出跳闸脉冲,断开线路两侧断路器。结论: 1、差动保护灵敏度很高 2、保护范围稳定 3、可以实现全线速动 4、不能作相邻元件的后备保护二、纵联差动保护的不平衡电流 1.稳态情况下的不平衡电流该不平衡电流为两侧电流互感器励磁电流的差。差动回路中产生不平衡电流最大值为式中 KTA一电流互感器 10%误差; max—被保护线路外部短路时,流过保护线路的最大短路电流。?Ktx—电流互感器的同型系数,两侧电流互感器为同型号时,取0.5,否则取l; Id 2.暂态不平衡电流纵联差动保护是全线速动保护,需要考虑在外部短路时暂态过程中差回路出现的不平衡电流,其最大值为 2。三、纵联差动保护的整定计算~式中Kfz——非周期分量的影响系数,在接有速饱和变流器时,取为1,否则取为1.5 差动保护的动作电流按躲开外部故障时的最大不平衡电流整定为防止电流互感器二次断线差动保护误动,按躲开电流互感器二次断线整定灵敏度校验:四、纵联差动保护的评价优点:全线速动,不受过负荷及系统振荡的影响,灵敏度较高。缺点:需敷设与被保护线路等长的辅助导线,且要求电流互感器的二次负载阻抗满足电流互感器10%的误差。这在经济上,技术上都难以实现。需装设辅助导线断线与短路的监视装置,辅助导线断线应将纵联差动保护闭锁。在输电线路中,只有用其它保护不能满足要求的短线路(一般不超过5~7km 线路)才采用。应用:第二节平行线路横联差动方向保护一、横联差动方向保护的工作原理横差方向保护:是用于平行线路的保护装置,它装设于平行线路的两侧。其保护范围为双回线的全长。横差方向保护的动作原理是反应双回线路的电流及功率方向,有选择性地瞬时切除故障线路。正常运行及外部发生短路:两线路中的电流相等。两电流互感器差回路中的电流仅为很小的不平衡电流,小于继电器的起动电流,电流继电器不会起动。内部故障时:如在线路XL-l的d点发生短路,M侧电流继电器中的电流当Ij>Idz时,电流继电器1动作。功率方向继电器2承受正方向功率动作,功率方向继电器3承受负功率不动作,因而跳开1QF。线路N侧:流过差回路中的电流当Ij>Idz

高压电动机保护定值计算

高压电动机的继电保护高压电动机的定子绕组和其引出线,一般应装设电流速断保护。对 生产过程中容易发生过载的电动机,应装设过负荷保护,过负荷保护可根据负荷特性带时限 作用于信号、跳闸或自动减负荷装置。对于高压电动机容量在2000kW以上的,在电流速断 不能满足灵敏度要求时,应装设纵联差动保护。当电源电压短时降低或短时中断后根据生 产过程不允许或不需要自启动的电动机,以及为了保证重要电动机自启动而需要断开的次要 电动机,应装设低电压保护,一般带有0.5~1.5s时限作用于跳闸,但是为了保证人身和设备 的安全,在电源电压长时间小时后,须从系统中自动断开的电动机,也需要装设低电压保护, 一般带有5~10s时限作用于跳闸。一、高压电动机的相间短路保护-对于功率小于2000kW 的电动机,常采用电流速断来作为电动机的相间短路保护,当灵敏度要求较高时,可以用DL 型或GL型继电器构成两相不完全星型连接方式,其接线方式与电路线路或电力变压器的电路 速断相同。也可以采用两相差接线,即两相一继电器接线。ZG电力自电流速断的动作电流 按躲过电动机的最大启动电流来整定。二、电动机的过压保护-过负荷保护可以采用一相 一继电器接线,也可以采用两相两继电器不完全星型连接或两相差一继电器接线。由于电动 机装有电流速断保护,过负荷保护就可以利用GL型继电器的反时限过电流装置来实现过负荷 保护。过负荷的动作电流按躲过电动机的最大启动电流来整定。过负荷保护的动作时间应 大于电动机的启动时间,一般取10-16s,如用GL型继电器,可取两倍动作电流时的时间 12-16s。三、高压电机的低电压保护-当电压互感器一次测隔离开关断开时,低电压保护 即退出工作,防止无动作。对保护动作不重要的电动机,电压继电器按60%-70%额定电压 整定,动作时间取0.5s;对动作较为重要的电动机,电压继电器按30%-50%额定电压整定, 动作时间取5-10s。四、高压电动机的差动保护-在小电流接地的供电系统中,可以采用 两相两继电器的差动保护接线,差动保护的动作电流按躲过电动机额定电流In来整定,主要 考虑二次回路断线时不至于引起误动作。五、同步电动机的失步保护-采用两相差接线对 同步电动机的失步进行保护。当电动机定子绕组内出现较大的由于失步引起的脉动电流时电 流继电器动作。反应转子回路内交变电流的失步保护-在同步电动机的转子回路中串接电 流互感器,正常运行时转子回路中流过直流电流,互感器的二次侧不产生感应电动势,保护 装置不动作,当同步电动机发生失步运行时,转子回路中感应出交变电流,通过电流互感器 使二次侧保护继电器动作。高压电动机保护配置:大型发电厂的高压厂用电机及一些工 矿企业的高压电机普遍采用微机保护。 1、对于容量在2000kW及以下的高压电动机的相间短 路的主保护为相电流速断。 1.1、电机启动过程速断保护按躲过电机的最大启动电流整定。动 作电流 Idz>=Ih, Ih=K1*K2*In2. K1为可靠系数,取1.5 K2为电机启动电流倍数,一般取 7 In2为电机一次额定电流/CT变比出口时间:0s 1.2、启动后按躲过母线出口三相短路时 的电动机反馈电流计算 1.2.1、对于真空断路器动作电流Idz>=IL IL=0.8I1 出口时间: 0s 1.2.2、对于F-C回路,由于速断带0.3--0.4s,取I2=0.5I1 出口时间:跟熔断器配合, 对于额定电流小的熔断器取0.3s;额定电流较大的取0.4s. 1.3、电机启动时间t C' 按实 际启动时间的最长时间的1.2倍整定。 2、过流反时限(一般反时限) 2.1、负序电流保护 Idz>=I2Z I2=0.06In2- 2.2、正序电流 Idz>=1.2--1.5In2 3、过热保护 4、接地保护 5、 长启动保护电压为3kV以上的异步电动机和同步电动机,对下列故障及异常运行方式,应 装设相应的保护:2 V& B# g: G5 e! H 1、定子绕组相间短路;ZG电力自动化,变电检修, 继电保护,远动通信,电力技术,高压试验, 2、定子绕组单相接地; 3、定子绕组过负荷; 4、定子绕组低电压; 5、同步电动机失步; 6、同步电动机失磁; 7、同步电动 机出现非同步冲击电流; 8、相电流不平衡。 Y3554-2中型高压三相异 步电动机启动保护计算书一、电动机基本技术参数(西安西玛电机有限公司):二、电动 机启动的继电保护整定计算: 1、瞬时电流速断:应躲过电机的启动电流保护装置一次动 作值:继电器动作电流: Idz.bh=Kk×Kq×Ie.d =(1.8~2.0 )×7×37.74

高压电机差动保护动作的几种原因

高压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1 电机差动保护动作原因分析 1.1 已经投产运行中的电机 已经投产运行的电机当出现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置出现了问题。 解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断出故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其二次线错接在了测量级上,其电机两侧CT的特性不一致。当给2号35kV主变充电时就会有直流分量和谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值1.6A左右,动作整定值1.02A)。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误动。 2 改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设备第一次投产试运行时,往往会出现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所出现过的几种情况。 (1)郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值6.2A-7.2A。动作整定值5.2A)。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认,由于电机距离开关柜较远(1000m),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流出现。测量电动机尾端到开关柜保护装置的接线直阻为3.5欧,CT带负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起来,在不改变变比的情况下,提升了带负载能力。改造后正常。 (2)郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在42A以上,更像是差动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算出来理想状态下

高压电动机保护误动的原因分析及解决方法

高压电动机保护误动的原因分析及解决方法 随着单组火电机组容量的增大,大容量的电动机设备在电厂的使用范围也越来越多。根据继电保护的法律规则,电动机的容量在2000kw级以上的都要在装置上加设一套纵联差动保护。如果,要将差动设置更加的灵敏可靠,就要准确的选用保护用的电流CT。并且,还要考虑互感器的二次负荷能力和匹配的程度,并加以完善。本文就是对电厂的高压电动机设备的保护误动情况进行原因分析和解决方法,下面为具体分析内容。 标签:高压电动机保护误动原因分析解决方法 一、高压电动机保护误动的基本原理 1.1、差动保护的基本原理 WDZ-3、WCZ-3是保护高压电动机的综合性的微型保护电动机设备,并且,他们要组合使用。它们的工作原理是:首先,电流互感器的信号要通过电路进行调整,然后再将电动机的一端电流I1与中性电流I2进行转换,并送至A/D的电压信号转换单元.再由转换的主控单元将各种数据进行导入,从而得到:Ir=(I1+I2)/2和Id=/I1-I2/。由此,我们就可以根据它得到的依据进行装置的动作判断,/Id/≥Iset、/Id/≥K/Ir/。所以,/I1-I2/≥Iset、/I1-I2/≥K/(I1+I2)/2/。从上面得出的结果中知道,差动电流的最小保护值就是Iset,比率的制动系数是K,所以只有当/I1-I2/≥Iset,/I1-I2/≥K/(I1+I2)/2/式子同时被满足时,电动机出口的蓄电器信号和动作才能正确进行,并且能他留下他的信号。 如图一 另外,电动机的开启时,启动瞬间的暂太峰值电流是应该被躲避的,所以软件设备也应该设置一小部分的延时。 1.2、差动保护误动原因的分析 LZX-10是差动保护电流互感器最常用的一款,D级/0.5级。电流变化比率是400/5,专用的D级保护差动。因为,差动的蓄电器动作电流的整和定值是5A,在电动机第一次启动时,为了方便对他进行调试,在对互感器的极性进行正确认时,电动机没有任何异常时,就要对电动机进行差动保护的退出,使电动机出现电动机启动成功为止。然而,在电动机的启动期间,信号灯CT断线是亮的,只有在启动后,信号灯才会熄灭。并且,它的整定CT断线是0.7A左右。这就说明电动机的起动时回路处有大于0.7A左右的插电电流经过。这时,互感器的断线就会发出预告的信号,不会直接的使回路跳闸。这次启动是由于差动保护系统被完全的退出,是不能满足电动机保护要求的,因此电路中还保留着插流电流,也是非常正常的。然而,我们想要知道的是,回路中的差流电流是从什么地方留到这里来的,这就要我们先将设备停机,然后,仔细的进行检查,确认电机的实

三种电动机差动保护原理的分析

三种电动机差动保护原理的分析 摘要:国内常用比率制动式纵差保护以及国外运用广泛的高阻抗差动保护和磁平衡差动的保护,针对电动机差动保护经常误动得现状,分析这三种差动保护的优缺点以及误动的原因。 关键词:电动机差动保护比率制动高阻抗磁平衡误动 0 概述 微机型电动机保护广泛应用于发电厂和大型厂矿企业, 一般电动机都装设综合保护,火力发电厂厂用电设计技术规定上规定2MW及以上的电动机以及2MW以下中性点具有分相引线的电动机,当电流速断保护灵敏性不够时应装设纵联差动保护,作为电动机的相间短路或匝间短路的主保护。 1 基于比率制动的纵差保护的动作原理及分析 比率制动式纵差保护继电器的差动电流id和制动电流ires各为 id= i1- i2=(1- 2)/na ires=(i1- i2)/2=(1+ 2)/2na 当差动保护区外短路时外部短路电流k•ou为 1= 2= k•ou,id =0 随着外部短路电流k•ou的增大,虽然不平衡电流和差动电流id均有所增加,但是制动电流ires随k•ou的线性增大继电器的动作电流也就相应的增大,从而达到保护不误动的目的,保护动作的判据: |I1-I2|≥Iset |I1-I2|≥K|(I1+ I2)/2| Iset为保护最小的动作电流,K为比率制动系数。 比率制动差动保护就是依靠动作电流和制动电流的动态变化,当两个判据同时满足使保护在区内故障灵敏动作。 接入差动保护的电流为设置在电动机三相电缆输入端(中压开关柜)及电

动机的中性点的三组电流互感器二次三相电流,电动机差动保护由三个分相差动原件组成。由于用于电动机的差动保护CT空间安装位置不同,造成二次回路阻抗大小不一致CT有不同的传变特性,在电动机启动或者外部短路时,容易引起差动保护误动。所以比率制动差动保护引入比率制动系数K。在实际情况中可以给差动元件80~100ms的动作延时,以便躲过电动机启动时的不平衡电流,防止电动机启动时保护误动也可以在保护装置中增加谐波制动。 2 高阻抗差动保护的动作原理及分析 1) 正常运行时, I1 = I2 ,所以ij = i1 - i2 = 0。因此,继电器两端电压Uab = ij ×Rj = 0。Rj 为继电器内部阻抗。电流不流经继电器线圈,也不会产生电压,所以继电器不动作。 2) 由于电动机启动电流较大,是额定电流的6~8 倍且含有较大的非周期分量。当CT1 与CT2 特性存在差异或剩磁不同,如有一个CT 先饱和。假设CT2 先饱和,CT2 的励磁阻抗减小,二次电流i2 减小。由于ij = i1 - i2导致ij 上升,继电器两端电压Uab上升。这样又进一步使CT2 饱和,直至CT2 完全饱和时,CT2 的励磁阻抗几乎为零。继电器输入端仅承受i1 在CT2 的二次漏阻抗Z02和连接电缆电阻Rw 产生的压降。 Uab = ij ( Rw + Z02) 为了保证保护有较高的灵敏度及可靠性,就应使Uab减小,也就是要求CT 二次漏阻抗降低。这种情况下,继电器的整定值应大于Uab ,才能保证继电器不误动 3) 发生区内故障时,i1 = Id/ n ( n为CT1 电流互感器匝数比) ij = i1 - ie≈ i1 , Uab = ij×Rj≈ i1 Rj 此时电流流入继电器线圈,产生电压,检测出故障,继电器动作。由于CT1 二次电流i1可分为流向CT 励磁阻抗Zm 的电流ie 和流向继电器的电流ij 。因此,励磁阻抗Zm 越大,越能检测出更小的故障电流,保护的灵敏度就越高。 高阻抗差动保护的主要优点: ①区外故障CT饱和时不易产生误动作; ②区内故障有较高的灵敏度。 高阻抗差动保护用的CT设计要点是:依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。保证在区内故障时,CT 能提供足够的动作电压。 Uk ≥2US,Uk 为CT 的额定拐点电压,US 为保证不误动的电压值。CT的额定拐点电压也称饱和起始电压,此电压定义为额定频率正弦波电动势最小方均根值加于被测CT 二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10 %时,励磁电流的增加至但不大于50 %。 一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级,如果匝数比的分散性很大,CT1和CT2的二次电流i1 和i2 不能互相抵消, 该差值电流

高压电动机保护整定原则

高压电动机保护整定原则 1)电流速断保护--电动机定子绕组相间短路的保护,动作于跳闸. 2)纵联差动保护--采用差动保护来对电动机内部及引出线相间短路进行保护,动作于跳闸. 3)过负载保护--预防电动机所拖动的生产机械过负荷而引起的过电流,动作于信号或带一定时限动作于跳闸. 4)单相接地保护--在小接地电流系统中,当接地电流大于5A时,为预防电流电动机定子绕组单相接地故障的危害,必须装设单相接地保护,接地电流值为5A~10A时,动作于信号;接地电流大于10A时,动作于跳闸. 5)低电压保护--防止电压降低或中断电动机自启动的保护,动作于跳闸。 通过学习后总结和多方面资料的查找,对电动机综合保护整定参数进行整理,给出以下参数,以供参考。 1 差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取:Idz=KIe/n 式中:Idz:差动电流速断的动作电流Ie:电动机的额定电流K:一般取6~12 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流Idz.min=KKΔmIe/n 式中:Ie:电动机的额定电流 n:电流互感器的变比 KK:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取Idz.min=(0.3~0.6)Ie/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数

K =KKKfzq Ktx Kc 式中:Ktx:电流互感器的同型系数,Ktx=0.5 KK:可靠系数,取2~3 Kc:电流互感器的比误差,取0.1 Kfzq:非周期分量系数,取1.5~2.0 计算值Kmax=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.5~1.0 3、相电流速断保护 1)速断动作电流高值Isdg Isdg = Kk / Ist 式中,Ist:电动机启动电流(A) Kk:可靠系数,可取Kk = 1.3 2)速断电流低值Isdd Isdd可取0.7~0.8Isdg,一般取0.7Isdg 3)速断动作时间tsd 当电动机回路用真空开关或少油开关做出口时,取tsd =0.06s,当电动机回路用FC做出口时,应适当延时以保证熔丝熔断早于速断保护。 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。 5、负序过流保护 1)负序动作电流I2dz I2dz按躲过正常运行时允许的负序电流整定

高压电动机的纵联差动保护

高压电动机的纵联差动保护 2010-03-19 01:28 对2000kW及以上的高压电动机,或电流速断保护灵敏度不能满足要求的高压电动机,且电动机的中性点侧有引出线时,可采用差动保护作为主保护。5000kW及以下的电动机差动保护一般按两相式接线,可由两只DL-11型继电器组成,其原理接线如图7.6.2(a)所示。对5000kW以上电动机,一般采用BCH-2型差动继电器组成三相式接线,原理接线如图7.6.2(b)所示,均作用于电动机出口断路器跳闸。 当采用DL-11型电流继电器组成差动保护时,为躲开电动机启动时非周期分量电流的影响,可利用一个带0.1s延时的出口中间继电器动作于高压断路器跳闸;当采用BCH-2型继电器时,建议用高灵敏度的差动保护,其原理接线如图7.6.2(b)所示。继电器的差动线圈接在相应相的差值回路中,各相的平衡线圈均串接在中性线回路中,且与差动线圈呈反极性连接,要求在电流互感器二次回路断线时,保护装置不误动作。当保护区内发生两相或三相短路时,短路电流将反映到两个或三个差动线圈,而平衡线圈则无短路电流流过,所以只要在差动线圈中有较小的故障电流流过,差动继电器就能动作。 电动机差动保护的动作电流应按躲过电动机的额定电流来整定,继电器的动作电流为

(7.6.7) 式中 Krel——可靠系数,对DL型继电器取Krel=1.2~2;对BCH-2型继电器接成的高灵敏度接线Krel=0.55 灵敏度校验同样可按式(7.6.6)进行。 电动机差动保护的灵敏度可按下式校验 (7.6.6) (2).min——电动机端子处最小两相短路电流值。 式中 I k

高压异步电动机差动故障分析与处理 姚飞

高压异步电动机差动故障分析与处理姚飞 摘要:高压锅炉给水泵(10KV、2240KW高压异步电动机)在进行单体试车过程中出现差动保护故障,通过分析故障现象及综保装置故障录波显示参数,因异步电动机首尾端标示不一致,造成电机一启动就差动保护动作跳闸,通过更改互感器二次接线后差动电流恢复正常,电动机启动正常。本文从一起异步电动机启动过程中差动保护故障入手深入分析,并以故障处理的实例介绍行之有效的处理策略。 关键词:高压异步电动机;差动保护故障;处理策略 1 电动机差动保护的类型 根据规范要求,电动机容量在2MW及以上时应装设纵联差动保护。国内外电动机差动保护均采用比率制动差动保护和磁平衡差动保护两种类型。国内厂家生产的电动机综合保护装置如南瑞继保电气有限公司生产的RCS-9642CS、RCS-9643CS和PCS-9627D产品,均同时具有比率制动差动保护功能(俗称“大差动”)和磁平衡差动保护功能(俗称“小差动”),供用户根据具体工程情况选用。 由于比率制动差动保护一侧电流互感器装设在配电装置中,另一侧装设在电动机中性点侧。当电动机距供电配电装置较远时,中性点侧电流互感器有较长的二次电缆,则两侧电流互感器的二次阻抗严重不匹配,差动回路中有较大的不平衡电流。保护装置为躲过电动机电流,躲过外部短路时电动机的反馈电流等产生的不平衡电流,往往将制动斜率相应提高(不宜提高最小动作电流)来躲过不平衡电流引起的误动,这样则保护灵敏度会下降。为解决上述两侧电流互感器二次阻抗不匹配的问题,还要提高保护灵敏度,可采用磁平衡差动保护。 2 产生差动保护故障的类型 2.1 高压异步电动机首尾端相序接错故障 我厂1#A高压锅炉给水泵(10KV、2240KW高压异步电动机)电动机综合保护装置采用南瑞继保PCS-9627D。在进行单体试车过程中出现差动速断保护动作和比率差动保护动作,通过分析故障现象及综保装置故障录波显示波形,查出差动故障的是因为电机厂家在试车前更换异步电动机中性点接线盒后,将异步电动机首尾端标示除U相外,V相、W相均接反,造成电机一启动就差动保护动作跳闸,通过更改互感器二次接线后差动电流恢复正常,电动机启动正常。 2.2 电流互感器过饱和故障 在起动3#循环水泵(10KV、2500KW高压异步电动机)瞬间电机综合保护装置差动保护动作,电机运行柜真空断路器跳闸。故障出现后,组织相关人员针对事故现象,进行了一系列的检查、试验模拟没有发现明显的故障点。从整个检查过程来看,只有电流互感器的试验项目进行得不完善,仅做了角差和比差两项,只能反应出电流互感器的误差是否在合格范围内,不能完全判断电流互感器是否有缺陷。所以有必要对电流互感器做进一步分析与检查,确认电流互感器是否存在故障。 3 实际的应用 3.1 综合保护装置保护类型确定 (1)纵联差动保护:为了防止电动机发生相间或匝间短路,通过判断电机首端和尾端电流的差值来实现保护,作用于跳闸。综合继电保护装置对差动保护采用分相式,即A、B、C任意一相保护动作均出口。(2)过流反时限保护:为防止电机或驱动设备发生堵转等情况导致电机定子电流过大而设置,通过判断电机

关于高压电动机差动保护CT 配置的探讨

关于高压电动机差动保护CT 配置的探讨 【摘要】本文就高压电动机差动保护CT 配置重要性进行了论述,通过比较目前通用的三种的配置方式的优缺 点,依次进行了排序,并推荐了最佳配置选择方案。 【关键词】高压电动机差动保护 CT 配置 1 引言 高压电动机,是发电厂重要的辅机设备,其故障将严重威胁机组的正常运行。2000kW 及以上的 高压电动机,或电流速断保护灵敏度不能满足要求的高压电动机,且电动机的中性点侧有引出线时, 一般都采用差动保护作为主保护。《继电保护和安全自动装置技术规程》(GB/T14285-2006)第4.13.2 条规定:对电动机的定子绕组及其引出线的相间短路故障,应按下列规定装设相应的保护:2MW 以 下的电动机,装设电流速断保护,保护宜采用两相式。2MW 及以上的电动机,或2MW 以下,但电流 速断保护灵敏系数不符合要求时,可装设纵联差动保护。纵联差动保护应防止在电动机自起动过程 中误动作。上述保护应动作于跳闸,对于有自动灭磁装置的同步电动机保护还应动作于灭磁。《火力 发电厂厂用电设计技术规定》(DL/T5153-2002)也同样有如下规定:采用断路器作为保护及操作电 器的高压厂用异步电动机应装设下列保护:1、纵联差动保护,用于保护电动机绕组内及引出线上的 相间短路故障。2MW 及以上的电动机应装设本保护。对于2MW 以下中性点具有分相引线的电动机, 当电流速断保护灵敏性不够时,也应装设本保护。保护装置采用两相两继电器式接线,瞬时动作于 断路器跳闸。 目前高压电动机差动保护均采用微机保护装置。微机保护装置其优点是集保护、测量、监视、控制、人机接口、通信等多种功能于一体;一台装置即可完成开关柜内所有的保护及自动化功能, 简化了高压开关柜二次设计和施工,代替了各种常规继电器和测量仪表,节省了大量的安装空间和 控制电缆。配备保护和控制可编程功能,通用性强,内置保护库,用户可根据运行需要选配相应保 护,以DSP 数字信号处理器为核心,具有先进内核结构、高速运算能力和实时信号处理等优良特性, 过去由于CPU 性能等因素而无法实现的保护算法可轻松实现。有完善的自检能力,发现装置异常能 自动告警;具有自保护能力,有效防止接线错误或非正常运行引起的装置永久性损坏;免维护设计,



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


    图片新闻

    实验室药品柜的特性有哪些
    实验室药品柜是实验室家具的重要组成部分之一,主要
    小学科学实验中有哪些教学
    计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
    实验室各种仪器原理动图讲
    1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
    高中化学常见仪器及实验装
    1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
    微生物操作主要设备和器具
    今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
    浅谈通风柜使用基本常识
     众所周知,通风柜功能中最主要的就是排气功能。在

    专题文章

      CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭