The 8 Main Characteristics of Animals

您所在的位置:网站首页 蝴蝶纹身图案手稿 The 8 Main Characteristics of Animals

The 8 Main Characteristics of Animals

2024-07-01 18:03:51| 来源: 网络整理| 查看: 265

01 of 08 Multicellularity Multicellular organism, conceptual image

 

Science Photo Library - ANDRZEJ WOJCICKI / Getty Images

If you're trying to distinguish a true animal from, say, a paramecium or an amoeba, it's not very hard: animals, by definition, are multicellular creatures, though the number of cells varies greatly across species. (For example, the roundworm C. elegans, which is widely used in biology experiments, consists of exactly 1,031 cells, no more and no less, while a human being is composed of literally trillions of cells.) However, it's important to keep in mind that animals aren't the only multicellular organisms; that honor is also shared by plants, fungi, and even some species of algae.

02 of 08 Eukaryotic Cell Structure Eukaryotic cell structure

 

MedicalRF.com / Getty Images

Possibly the most important split in the history of life on earth is the one between prokaryotic and eukaryotic cells. Prokaryotic organisms lack membrane-bounded nuclei and other organelles, and are exclusively single-celled; for example, all bacteria are prokaryotes. Eukaryotic cells, by contrast, have well-defined nuclei and internal organelles (such as mitochondria), and are capable of grouping together to form multicellular organisms. While all animals are euakaryotes, not all eukaryotes are animals: this hugely diverse family also includes plants, fungi, and the tiny marine proto-animals known as protists.

03 of 08 Specialized Tissues internal organs illustration

SCIEPRO / Getty Images

One of the most remarkable things about animals is how specialized their cells are. As these organisms develop, what seems to be plain-vanilla "stem cells" diversify into four broad biological categories: nervous tissues, connective tissues, muscle tissues, and epithelial tissues (which line the organs and blood vessels). More advanced organisms display even more specific levels of differentiation; the various organs of your body, for example, are made up of liver cells, pancreatic cells, and dozens of other varieties. (The exceptions that prove the rule here are sponges, which are technically animals but have virtually no differentiated cells.)

04 of 08 Sexual Reproduction Insemination, 3D Rendering

Westend61 / Getty Images

Most animals engage in sexual reproduction: two individuals have some form of sex, combine their genetic information, and produce offspring bearing the DNA of both parents. (Exception alert: some animals, including certain species of sharks, are capable of reproducing asexually.) The advantages of sexual reproduction are huge, from an evolutionary perspective: the ability to test out various genome combinations allows animals to adapt quickly to new ecosystems, and thus out-compete asexual organisms. Once again, sexual reproduction isn't restricted to animals: this system is also employed by various plants, fungi, and even some very forward-looking bacteria!

05 of 08 A Blastula Stage of Development A Blastula

MedicalRF.com / Getty Images

This one is a bit complicated, so pay attention. When a male's sperm encounters a female's egg, the result is a single cell called a zygote; after the zygote undergoes a few rounds of division, it's called a morula. Only true animals experience the next stage: the formation of a blastula, a hollow sphere of multiple cells surrounding an inner fluid cavity. It's only when cells are enclosed in a blastula that they start differentiating into different tissue types, as described in slide #4. (If you're interested in further study, or if you're just a glutton for punishment, you can also explore the blastomere, blastocyst, embryoblast and trophoblast stages of embryonic development!)

06 of 08 Motility (The Ability to Move) A lion running

bucky_za / Getty Images

Fish swim, birds fly, wolves run, snails slide, and snakes slither--all animals are capable of movement at some stage in their life cycles, an evolutionary innovation that allows these organisms to more easily conquer new ecological niches, pursue prey, and evade predators. (Yes, some animals, like sponges and corals, are virtually immobile once they're fully grown, but their larvae are capable of movement before they become rooted to the sea floor.) This is one of the key traits that distinguishes animals from plants and fungi, if you ignore relatively rare outliers like venus flytraps and fast-growing bamboo trees.

07 of 08 Heterotrophy (The Ability to Ingest Food) chipmunk eating corn

Juan De Dios Sanchez / EyeEm

All living things need organic carbon to support the basic processes of life, including growth, development, and reproduction. There are two ways to obtain carbon: from the environment (in the form of carbon dioxide, a freely available gas in the atmosphere), or by feeding on other carbon-rich organisms. Living organisms that obtain carbon from the environment, like plants, are called autotrophs, while living organisms that obtain carbon by ingesting other living organisms, like animals, are called heterotrophs. However, animals aren't the world's only heterotrophs; all fungi, many bacteria, and even some plants are at least partially heterotrophic.

08 of 08 Advanced Nervous Systems Human brain, illustration

SEBASTIAN KAULITZKI / Getty Images

Have you ever seen a magnolia bush with eyes, or a talking toadstool mushroom? Of all the organisms on earth, only mammals are sufficiently advanced to possess more-or-less acute senses of sight, sound, hearing, taste and touch (not to mention the echolation of dolphins and bats, or the ability of some fish and sharks to sense magnetic disturbances in the water using their "lateral lines."). These senses, of course, entail the existence of at least a rudimentary nervous system (as in insects and starfish), and, in the most advanced animals, fully developed brains--perhaps the one key feature that truly distinguishes animals from the rest of nature.



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭