辐射传输:从唯象到第一性原理

您所在的位置:网站首页 第一性原理概念 辐射传输:从唯象到第一性原理

辐射传输:从唯象到第一性原理

2024-07-01 14:57:31| 来源: 网络整理| 查看: 265

Arons A B and Peppard M B. 1965. Einstein’s proposal of the photon concept—a translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33(5): 367-374 [DOI: 10.1119/1.1971542http://dx.doi.org/10.1119/1.1971542]

Bablet A, Vu P V H, Jacquemoud S, Viallefont-Robinet F, Fabre S, Briottet X, Sadeghi M, Whiting M L, Baret F and Tian J. 2018. MARMIT: a multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400-2500 nm). Remote Sensing of Environment, 217: 1-17 [DOI: 10.1016/j.rse.2018.07.031http://dx.doi.org/10.1016/j.rse.2018.07.031]

Balsara D. 2001. Fast and accurate discrete ordinates methods for multidimensional radiative transfer. Part I, basic methods. Journal of Quantitative Spectroscopy and Radiative Transfer, 69(6): 671-707 [DOI: 10.1016/S0022-4073(00)00114-Xhttp://dx.doi.org/10.1016/S0022-4073(00)00114-X]

Barabanenkov Y N. 1969. On the spectral theory of radiation transport equations. Soviet Physics Journal of Experimental and Theoretical Physics, 29(4): 679-684

Barabanenkov Y N, Kravtsov Y A, Rytov S M and Tamarskiĭ V I. 1971. Status of the theory of propagation of waves in a randomly inhomogeneous medium. Soviet Physics Uspekhi, 13(5): 551-575 [DOI: 10.1070/PU1971v013n05ABEH004213http://dx.doi.org/10.1070/PU1971v013n05ABEH004213]

Beer A. 1854. Grundriss des photometrischen Calcüles. Braunschweig: Friedrich Vieweg und Sohn

Benassi M, Garcia R D M, Karp A H and Siewert C E. 1984. A high-order spherical harmonics solution to the standard problem in radiative transfer. The Astrophysical Journal, 280: 853-864 [DOI: 10.1086/162059http://dx.doi.org/10.1086/162059]

Bernes C. 1979. A Monte Carlo approach to non-LTE radiative transfer problems. Astronomy and Astrophysics, 73: 67-73

Borovoi A G. 1966. The iteration method in multiple scattering: the transfer equation. Soviet Physics Journal, 9(6): 27-29 [DOI: 10.1007/BF01103181http://dx.doi.org/10.1007/BF01103181]

Bouguer P. 1729. Essai d’optique sur la gradation de la lumière. Paris: Claude Jombert

Bouguer P. 1760. Traité d’optique sur la gradation de la lumière. Paris: H. L. Guerin & L. F. Delatour

Bremmer H. 1964. Random volume scattering. Radio Science, 68(9): 967-981

Chandrasekhar S. 1950. Radiative Transfer. Oxford: Oxford University Press

Chang W M, Tan S R, Lemmetyinen J, Tsang L, Xu X L and Yueh S H. 2014. Dense media radiative transfer applied to SnowScat and SnowSAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3811-3825 [DOI: 10.1109/JSTARS.2014.2343519http://dx.doi.org/10.1109/JSTARS.2014.2343519]

Chwolson O D. 1889. Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bulletin de l’Académie Impériale des sciences de St.-Pétersbourg, 33: 221-256

Doicu A and Mishchenko M I. 2018. Overview of methods for deriving the radiative transfer theory from the Maxwell equations. I: approach based on the far-field Foldy equations. Journal of Quantitative Spectroscopy and Radiative Transfer, 220: 123-139 [DOI: 10.1016/j.jqsrt.2018.09.004http://dx.doi.org/10.1016/j.jqsrt.2018.09.004]

Doicu A and Mishchenko M I. 2019a. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: approach based on the Dyson and Bethe–Salpeter equations. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 25-36 [DOI: 10.1016/j.jqsrt.2018.10.032http://dx.doi.org/10.1016/j.jqsrt.2018.10.032]

Doicu A and Mishchenko M I. 2019b. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. III: Effects of random rough boundaries and packing density. Journal of Quantitative Spectroscopy and Radiative Transfer, 224: 154-170 [DOI: 10.1016/j.jqsrt.2018.11.002http://dx.doi.org/10.1016/j.jqsrt.2018.11.002]

Doicu A, Mishchenko M I and Trautmann T. 2020a. Electromagnetic scattering by discrete random media illuminated by a Gaussian beam II: Solution of the radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 256: 107297 [DOI: 10.1016/j.jqsrt.2020.107297http://dx.doi.org/10.1016/j.jqsrt.2020.107297

Doicu A, Mishchenko M I and Trautmann T. 2020b. Electromagnetic scattering by discrete random media illuminated by a Gaussian beam I: derivation of the radiative transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 256: 107301 [DOI: 10.1016/j.jqsrt.2020.107301http://dx.doi.org/10.1016/j.jqsrt.2020.107301

Dyson F J. 1949. The S matrix in quantum electrodynamics. Physical Review, 75(11): 1736 [DOI: 10.1103/PhysRev.75.1736http://dx.doi.org/10.1103/PhysRev.75.1736]

Eddington A S. 1916. On the radiative equilibrium of the stars. Monthly Notices of the Royal Astronomical Society, 77(1): 16-35 [DOI: 10.1093/mnras/77.1.16http://dx.doi.org/10.1093/mnras/77.1.16]

Efremenko D and Kokhanovsky A. 2021. Light scattering, absorption, extinction, and propagation in the terrestrial atmosphere//Foundations of Atmospheric Remote Sensing. Switzerland: Springer: 77-147 [DOI: 10.1007/978-3-030-66745-0_3http://dx.doi.org/10.1007/978-3-030-66745-0_3]

Egel A, Pattelli L, Mazzamuto G, Wiersma D S and Lemmer U. 2017. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 199: 103-110 [DOI: 10.1016/j.jqsrt.2017.05.010http://dx.doi.org/10.1016/j.jqsrt.2017.05.010]

Ergül Ö and Gürel L. 2014. The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems. Piscataway: John Wiley and Sons [DOI: 10.1002/9781118844977http://dx.doi.org/10.1002/9781118844977]

Foldy L L. 1945. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review, 67(3/4): 107-119

Furutsu K. 1975. Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation. Radio Science, 10(1): 29-44 [DOI: 10.1029/RS010i001p00029http://dx.doi.org/10.1029/RS010i001p00029]

Gans R. 1924. Die Farbe des Meeres. Annalen der Physik, 380(17): 1-22 [DOI: 10.1002/andp.19243801702http://dx.doi.org/10.1002/andp.19243801702]

Garcia R D M and Siewert C E. 1986. A generalized spherical harmonics solution for radiative transfer models that include polarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 36(5): 401-423 [DOI: 10.1016/0022-4073(86)90097-Xhttp://dx.doi.org/10.1016/0022-4073(86)90097-X]

Gastellu-Etchegorry J P, Martin E and Gascon F. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. International Journal of Remote Sensing, 25(1): 73-96 [DOI: 10.1080/0143116031000115166http://dx.doi.org/10.1080/0143116031000115166]

Glassner A S. 1989. An Introduction to Ray Tracing. London: Academic Press

Guo J, Tsang L, Asher W, Ding K H and Chen C T. 2001. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 1019-1027 [DOI: 10.1109/36.921420http://dx.doi.org/10.1109/36.921420]

Howell J R, Mengüc M P and Siegel R. 2010. Thermal Radiation Heat Transfer. Boca Raton: CRC Press

Ishimaru A. 1978. Wave Propagation and Scattering in Random Media. New York: Academic Press

Ishimaru A and Kuga Y. 1982. Attenuation constant of a coherent field in a dense distribution of particles. Journal of the Optical Society of America, 72(10): 1317-1320 [DOI: 10.1364/JOSA.72.001317http://dx.doi.org/10.1364/JOSA.72.001317]

Ito G, Arnold J A and Glotch T D. 2017. T-matrix and radiative transfer hybrid models for densely packed particulates at mid-infrared wavelengths. Journal of Geophysical Research: Planets, 122(5): 822-838 [DOI: 10.1002/2017JE005271http://dx.doi.org/10.1002/2017JE005271]

Ito G, Mishchenko M I and Glotch T D. 2018. Radiative-transfer modeling of spectra of planetary regoliths using cluster-based dense packing modifications. Journal of Geophysical Research: Planets, 123(5): 1203-1220 [DOI: 10.1029/2018JE005532http://dx.doi.org/10.1029/2018JE005532]

Jin Y. 1992. Radiative Transfer of multi-layer random media with multi-component dense random scattering particles. Science China A, (12): 1311-1317

金亚秋. 1992. 多成分密集随机散射粒子多层随机介质的辐射传输. 中国科学: A 辑, (12): 1311-1317

Jin Y. 1997. Radiative transfer of snowpack/vegetation canopy at the SSM/I channels and satellite data analysis. Remote Sensing of Environment, 61(1): 55-63 [DOI: 10.1016/S0034-4257(96)00240-4http://dx.doi.org/10.1016/S0034-4257(96)00240-4]

Kaasalainen S, Kaasalainen M, Mielonen T, Suomalainen J, Peltoniemi J I and Näränen J. 2006. Optical properties of snow in backscatter. Journal of Glaciology, 52(179): 574-584 [DOI: 10.3189/172756506781828421http://dx.doi.org/10.3189/172756506781828421]

Kravtsov Y A and Apresyan L A. 1996. Radiative transfer: new aspects of the old theory//Progress in Optics. Amsterdam: Elsevier, 36: 179-244 [DOI: 10.1016/S0079-6638(08)70315-9http://dx.doi.org/10.1016/S0079-6638(08)70315-9]

Kuusk A. 2018. Canopy radiative transfer modeling//Comprehensive Remote Sensing. Oxford: Elsevier: 9-22 [DOI: 10.1016/B978-0-12-409548-9.10534-2http://dx.doi.org/10.1016/B978-0-12-409548-9.10534-2]

Kuzmina M G, Bass L P and Nikolaeva O V. 2018. Polarized radiative transfer in optically active light scattering media//Kokhanovsky A, ed. Springer Series in Light Scattering Volume 2: Light Scattering, Radiative Transfer and Remote Sensing. [s.l.]: Springer: 1-53 [DOI: 10.1007/978-3-319-70808-9_1http://dx.doi.org/10.1007/978-3-319-70808-9_1]

Lambert J H. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Augsburg: Detlefsen

Lax M. 1951. Multiple scattering of waves. Reviews of Modern Physics, 23(4): 287-310 [DOI: 10.1103/RevModPhys.23.287http://dx.doi.org/10.1103/RevModPhys.23.287]

Lax M. 1952. Multiple scattering of waves. II. The effective field in dense systems. Physical Review, 85: 621 [DOI: 10.1103/PhysRev.85.621http://dx.doi.org/10.1103/PhysRev.85.621]

Liang S L and Mishchenko M I. 1997. Calculations of the soil hot-spot effect using the coherent backscattering theory. Remote Sensing of Environment, 60(2): 163-173 [DOI: 10.1016/S0034-4257(96)00179-4http://dx.doi.org/10.1016/S0034-4257(96)00179-4]

Lommel E. 1887. Die Photometrie der diffusen Zurückwerfung. Sitzber Acad Wissensch München, 17: 95-124

Ma L X, Tan J Y, Zhao J M, Wang F Q and Wang C A. 2017. Multiple and dependent scattering by densely packed discrete spheres: comparison of radiative transfer and Maxwell theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 187: 255-266 [DOI: 10.1016/j.jqsrt.2016.09.025http://dx.doi.org/10.1016/j.jqsrt.2016.09.025]

Mackowski D W and Mishchenko M I. 2011. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13): 2182-2192 [DOI: 10.1016/j.jqsrt.2011.02.019http://dx.doi.org/10.1016/j.jqsrt.2011.02.019]

Milne E A. 1921. Radiative equilibrium in the outer layers of a star: the temperature distribution and the law of darkening. Monthly Notices of the Royal Astronomical Society, 81(5): 361-375 [DOI: 10.1093/mnras/81.5.361http://dx.doi.org/10.1093/mnras/81.5.361]

Mishchenko M I. 2002. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics, 41(33): 7114 [DOI: 10.1364/AO.41.007114http://dx.doi.org/10.1364/AO.41.007114]

Mishchenko M I. 2010. Poynting–Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm. Optics Express, 18(19): 19770 [DOI: 10.1364/OE.18.019770http://dx.doi.org/10.1364/OE.18.019770]

Mishchenko M I. 2014a. Directional radiometry and radiative transfer: the convoluted path from centuries-old phenomenology to physical optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 146: 4-33 [DOI: 10.1016/j.jqsrt.2014.02.033http://dx.doi.org/10.1016/j.jqsrt.2014.02.033]

Mishchenko M I. 2014b. Electromagnetic Scattering by Particles and Particle Groups: An Introduction. Cambridge: Cambridge University Press [DOI: 10.1017/CBO9781139019064http://dx.doi.org/10.1017/CBO9781139019064]

Mishchenko M I, Dlugach J M, Yanovitskij E G and Zakharova N T. 1999. Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 63(2/6): 409-432

Mishchenko M I, Dlugach J M, Yurkin M A, Bi L, Cairns B, Liu L, Panetta R L, Travis L D, Yang P and Zakharova N T. 2016. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Physics Reports, 632: 1-75 [DOI: 10.1016/j.physrep.2016.04.002http://dx.doi.org/10.1016/j.physrep.2016.04.002]

Mishchenko M I, Goldstein D H, Chowdhary J and Lompado A. 2013. Radiative transfer theory verified by controlled laboratory experiments. Optics Letters, 38(18): 3522 [DOI: 10.1364/OL.38.003522http://dx.doi.org/10.1364/OL.38.003522]

Mishchenko M I, Hovenier J W and Mackowski D W. 2004. Single scattering by a small volume element. Journal of the Optical Society of America A, 21(1): 71-87 [DOI: 10.1364/JOSAA.21.000071http://dx.doi.org/10.1364/JOSAA.21.000071]

Mishchenko M I and Liu L. 2007. Weak localization of electromagnetic waves by densely packed many-particle groups: exact 3D results. Journal of Quantitative Spectroscopy and Radiative Transfer, 106(1/3): 616-621 [DOI: 10.1016/j.jqsrt.2007.01.039http://dx.doi.org/10.1016/j.jqsrt.2007.01.039]

Mishchenko M I, Liu L, Mackowski D W, Cairns B and Videen G. 2007. Multiple scattering by random particulate media: exact 3D results. Optics Express, 15(6): 2822 [DOI: 10.1364/OE.15.002822http://dx.doi.org/10.1364/OE.15.002822]

Mishchenko M I, Travis L D and Lacis A A. 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press

Mishchenko M I, Travis L D and Lacis A A. 2006. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge: Cambridge University Press

Mobley C D. 2001. Radiative transfer in the ocean//Encyclopedia of Ocean Sciences. San Diego: Academic Press: 2321-2330 [DOI: 10.1006/rwos.2001.0469http://dx.doi.org/10.1006/rwos.2001.0469]

Muinonen K. 2004. Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves in Random Media, 14(3): 365-388 [DOI: 10.1088/0959-7174/14/3/010http://dx.doi.org/10.1088/0959-7174/14/3/010]

Muinonen K, Markkanen J, Väisänen T, Peltoniemi J and Penttilä A. 2018. Multiple scattering of light in discrete random media using incoherent interactions. Optics Letters, 43(4): 683-686 [DOI: 10.1364/OL.43.000683http://dx.doi.org/10.1364/OL.43.000683]

Muinonen K, Mishchenko M I, Dlugach J M, Zubko E, Penttilä A and Videen G. 2012. Coherent backscattering verified numerically for a finite volume of spherical particles. The Astrophysical Journal, 760(2): 118 [DOI: 10.1088/0004-637X/760/2/118http://dx.doi.org/10.1088/0004-637X/760/2/118]

Panetta R L, Liu C and Yang P. 2013. A pseudo-spectral time domain method for light scattering computation//Kokhanovsky A A, ed. Light Scattering Reviews 8. Berlin: Springer: 139-188 [DOI: 10.1007/978-3-642-32106-1_4http://dx.doi.org/10.1007/978-3-642-32106-1_4]

Peraiah A. 2002. An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge: Cambridge University Press

Prahl S A. 1995. The adding-doubling method//Optical-Thermal Response of Laser-Irradiated Tissue. New York: Springer: 101-129 [DOI: 10.1007/978-1-4757-6092-7_5http://dx.doi.org/10.1007/978-1-4757-6092-7_5]

Preisendorfer R W. 1965. Radiative Transfer on Discrete Spaces. Oxford: Pergamon Press

Prishivalko A P, Babenko V A and Kuzmin V N. 1984. Scattering and absorption of light by inhomogeneous and anisotropic spherical particles. Minsk: Hauka i Tehnika

Qin Q M, Chen J, Zhang Y G, Ren H Z, Wu Z H, Zhang C S, Wu L S and Liu J L. 2020. A discussion on some frontier directions of quantitative remote sensing. Remote Sensing for Land and Resources, 32(4): 8-15

秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 2020. 定量遥感若干前沿方向探讨. 国土资源遥感, 32(4): 8-15 [DOI: 10.6046/gtzyyg.2020.04.02http://dx.doi.org/10.6046/gtzyyg.2020.04.02]

Qin Q M, Fan W J and Ren H Z. 2018. Theories, Methods and Applications of Quantitative Remote Sensing for Croplands. Beijing: Science Press

秦其明, 范闻捷, 任华忠. 2018. 农田定量遥感理论、方法与应用. 北京: 科学出版社

Royer A, Roy A, Montpetit B, Saint-Jean-Rondeau O, Picard G, Brucker L and Langlois A. 2017. Comparison of commonly-used microwave radiative transfer models for snow remote sensing. Remote Sensing of Environment, 190: 247-259

Rozenberg G V. 1955. Vector-parameter Stokes. UAN 56(1): 79-110

Sadeghi M, Babaeian E, Tuller M and Jones S B. 2018. Particle size effects on soil reflectance explained by an analytical radiative transfer model. Remote Sensing of Environment, 210: 375-386 [DOI: 10.1016/j.rse.2018.03.028http://dx.doi.org/10.1016/j.rse.2018.03.028]

Salpeter E E and Bethe H A. 1951. A relativistic equation for bound-state problems. Physical Review, 84(6): 1232-1242 [DOI: 10.1103/PhysRev.84.1232http://dx.doi.org/10.1103/PhysRev.84.1232]

Schäfer J and Kienle A. 2008. Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory. Optics Letters, 33(20): 2413 [DOI: 10.1364/OL.33.002413http://dx.doi.org/10.1364/OL.33.002413]

Schmugge T J. and Choudhury B J. 1981. A comparison of radiative transfer models for predicting the microwave emission from soils. Radio Science, 16(5), 927-938 [DOI: 10.1029/RS016i005p00927http://dx.doi.org/10.1029/RS016i005p00927]

Schuster A. 1905. Radiation through a foggy atmosphere. The Astrophysical Journal, 21: 1 [DOI: 10.1086/141186http://dx.doi.org/10.1086/141186]

Schwarzschild K. 1906. Über das gleichgewicht der sonnenatmosphäre. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1906: 41-53

Siewert C E. 2000. A discrete-ordinates solution for radiative-transfer models that include polarization effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 64(3): 227-254 [DOI: 10.1016/S0022-4073(99)00006-0http://dx.doi.org/10.1016/S0022-4073(99)00006-0]

Sobolev V V. 1949. On polarization of scattered light. Trudy Astron. Obs. Leningr. Univ, 13: 3-16

Sun B Q, Bi L, Yang P, Kahnert M and Kattawar G. 2019. Invariant Imbedding T-Matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles. Amsterdam: Elsevier

Titov G A. 1990. Statistical description of radiation transfer in clouds. Journal of the Atmospheric Sciences, 47(1): 24-38 [DOI: 10.1175/1520-0469(1990)0472.0.CO;2http://dx.doi.org/10.1175/1520-0469(1990)0472.0.CO;2]

Tsang L. 1984. Thermal emission of nonspherical particles. Radio Science, 19(4): 966-974 [DOI: 10.1029/RS019i004p00966http://dx.doi.org/10.1029/RS019i004p00966]

Tsang L, Chen C T, Chang A T C, Guo J J and Ding K H. 2000a. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow. Radio Science, 35(3): 731-749 [DOI: 10.1029/1999RS002270http://dx.doi.org/10.1029/1999RS002270]

Tsang L and Ishimaru A. 1987. Radiative wave equations for vector electromagnetic propagation in dense nontenuous media. Journal of Electromagnetic Waves and Applications, 1(1): 59-72 [DOI: 10.1163/156939387X00090http://dx.doi.org/10.1163/156939387X00090]

Tsang L and Kong J A. 2001. Scattering of Electromagnetic Waves: Advanced Topics. New York: John Wiley and Sons [DOI: 10.1002/0471224278http://dx.doi.org/10.1002/0471224278]

Tsang L and Kong J A. 1980. Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism. Journal of Applied Physics, 51(7): 3465-3485 [DOI: 10.1063/1.328200http://dx.doi.org/10.1063/1.328200]

Tsang L, Kong J A and Ding K H. 2000b. Scattering of Electromagnetic Waves: Theories and Applications. New York: John Wiley and Sons [DOI: 10.1002/0471224286http://dx.doi.org/10.1002/0471224286]

Tsang L, Kong J A and Habashy T. 1982. Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus–Yevick approximation. The Journal of the Acoustical Society of America, 71(3): 552-558 [DOI: 10.1121/1.387524http://dx.doi.org/10.1121/1.387524]

Tsang L, Pan J, Liang D, Li Z X, Cline D W and Tan Y H. 2007. Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE Transactions on Geoscience and Remote Sensing, 45(4): 990-1004 [DOI: 10.1109/TGRS.2006.888854http://dx.doi.org/10.1109/TGRS.2006.888854]

Tseng S H and Huang B. 2007. Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell’s equations of light scattering by a macroscopic random medium. Applied Physics Letters, 91(5): 051114 [DOI: 10.1063/1.2767777http://dx.doi.org/10.1063/1.2767777]

Twersky V. 1964. On propagation in random media of discrete scatterers//Bellman R, ed. Proceedings of Symposia in Applied Mathematics. Providence: American Mathematical Society: 84-116 [DOI: 10.1090/psapm/016/0163605http://dx.doi.org/10.1090/psapm/016/0163605]

Twersky V. 1983. Propagation in correlated distributions of large-spaced scatterers. Journal of the Optical Society of America, 73(3): 313-320 [DOI: 10.1364/JOSA.73.000313http://dx.doi.org/10.1364/JOSA.73.000313]

Väisänen T. 2020. Light Scattering in Dense Particulate Media. Helsinki: University of Helsinki

Väisänen T, Markkanen J, Hadamcik E, Renard J B, Lasue J, Levasseur-Regourd A C, Blum J and Muinonen K. 2020a. Scattering of light by a large, densely packed agglomerate of small silica spheres. Optics Letters, 45(7): 1679 [DOI: 10.1364/OL.382240http://dx.doi.org/10.1364/OL.382240]

Väisänen T, Martikainen J and Muinonen K. 2020b. Scattering of light by dense particulate media in the geometric optics regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 241: 106719 [DOI: 10.1016/j.jqsrt.2019.106719http://dx.doi.org/10.1016/j.jqsrt.2019.106719]

Väisänen T, Markkanen J, Penttilä A and Muinonen K. 2019. Radiative transfer with reciprocal transactions: numerical method and its implementation. PLoS ONE, 14(1): e0210155 [DOI: 10.1371/journal.pone.0210155http://dx.doi.org/10.1371/journal.pone.0210155]

Verhoef W. 1998. Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies. Wageningen: Wageningen Agricultural University

Voit F, Hohmann A, Schäfer J and Kienle A. 2012. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory. Journal of Biomedical Optics, 17(4): 045003 [DOI: 10.1117/1.JBO.17.4.045003http://dx.doi.org/10.1117/1.JBO.17.4.045003]

Voit F, Schäfer J and Kienle A. 2009. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations. Optics Letters, 34(17): 2593 [DOI: 10.1364/OL.34.002593http://dx.doi.org/10.1364/OL.34.002593]

Wang L V and Wu H. 2007. Biomedical Optics: Principles and Imaging. Hoboken: John Wiley and Sons

Watson K M. 1953. Multiple scattering and the many-body problem—applications to photomeson production in complex nuclei. Physical Review, 89(3): 575-587 [DOI: 10.1103/PhysRev.89.575http://dx.doi.org/10.1103/PhysRev.89.575]

Wen B, Tsang L, Winebrenner D P and Ishimaru A. 1990. Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 28(1): 46-59 [DOI: 10.1109/36.45744http://dx.doi.org/10.1109/36.45744]

Wendisch M and Yang P. 2012. Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. Singapore: John Wiley and Sons

Whitney B A. 2011. Monte Carlo radiative transfer//Fluid Flows to Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary. Singapore: World Scientific: 151-176 [DOI: 10.1142/9789814374774_0011http://dx.doi.org/10.1142/9789814374774_0011]

Wolf E. 1976. New theory of radiative energy transfer in free electromagnetic fields. Physical Review D, 13(4): 869-886 [DOI: 10.1103/PhysRevD.13.869http://dx.doi.org/10.1103/PhysRevD.13.869]

Wolf P E and Maret G. 1985. Weak localization and coherent backscattering of photons in disordered media. Physical Review Letters, 55(24): 2696-2699 [DOI: 10.1103/PhysRevLett.55.2696http://dx.doi.org/10.1103/PhysRevLett.55.2696]

Yang W, Jin X and Gao X Q. 2021. Vector radiative transfer equation for arbitrary shape particles derived from Maxwell’s electromagnetic theory. Journal of Quantitative Spectroscopy and Radiative Transfer, 265: 107307 [DOI: 10.1016/j.jqsrt.2020.107307http://dx.doi.org/10.1016/j.jqsrt.2020.107307]

Yu J H, Bi L, Han W and Zhang X Y. 2022. Application of a neural network to store and compute the optical properties of non-spherical particles. Advances in Atmospheric Sciences, 39(12): 2024-2039 [DOI: 10.1007/s00376-021-1375-5http://dx.doi.org/10.1007/s00376-021-1375-5]

Yurkin M A and Hoekstra A G. 2011. The discrete-dipole-approximation code ADDA: capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13): 2234-2247 [DOI: 10.1016/j.jqsrt.2011.01.031http://dx.doi.org/10.1016/j.jqsrt.2011.01.031]

Zhai P W, Hu Y X, Trepte C R and Lucker P L. 2009. A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method. Optics Express, 17(4): 2057-2079 [DOI: 10.1364/OE.17.002057http://dx.doi.org/10.1364/OE.17.002057]

Zhou L, Tsang L and Chen D. 2003. Polarimetric passive microwave remote sensing of wind vectors with foam-covered rough ocean surfaces. Radio Science, 38(4): 1073 [DOI: 10.1029/2002RS002764http://dx.doi.org/10.1029/2002RS002764]



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭