病原青枯菌土壤存活的影响因素研究进展

您所在的位置:网站首页 病原因素 病原青枯菌土壤存活的影响因素研究进展

病原青枯菌土壤存活的影响因素研究进展

2024-07-15 17:23:27| 来源: 网络整理| 查看: 265

Abstract:

Ralstonia solanacearum is a kind of soil-borne bacteria destructive to agricultural crops. As it is extensively distributed in the tropical, subtropical and temperate zones, it seriously threatens food safety of the world. In the world, a large number of scientists have devoted their efforts to studying bacterial wilt and R. solanacearum, but few have done a systematic research because there are so many factors contributing to the survival of R. solanacearum and most of the researches focus on a single factor only. Therefore, it is essential to identify what are the key factors that influence R. solanacearum survival in the soil to gain some valuable insights into management and control of the soil-borne diseases. Nevertheless, the factors are multifarious and their dynamics in soil systems together with their effects on R. solanacearum remain poorly explored. Herein, this paper aimed to primarily collate the effects and traits of R. solanacearum, as well as soil biotic and abiotic factors on the survival of R. solanacearum in soil. To achieve this goal, this paper first reviewed researches on impacts of individual and population characteristics of R. solanacearum, and then those on interactions of soil biotic and abiotic factors on R. solanacearum, especially reports on their roles in controlling soil-borne plant diseases. In the next section, this paper put forth an outlook for control of plant pathogenic R. solanacearum in future in light of the problems existing currently in this aspect. The traits of R. solanacearum include gene, behavior, and metabolite; soil biotic factors, such as populations and community structures of soil nematode, protozoan, bacteria, fungi, and specialized phage; and soil abiotic factors, such as root exudate, soil nutrients (i.e. N, P, and K), and soil physiochemical properties (i.e. pH, density, and temperature). Similarly, R. solanacearum survival in soil has three aspects:survival in the non-rhizospheric soil adjacent to the host plant, survival in the rhizosphere of the host plant, and survival on the root surface of the host plant. Hence, it is suggested that future researches be oriented towards investigation of R. solanacearum survival in soil and exploration of measures and practices of preventing soil-borne diseases. Therefore, future efforts should be accordingly devoted firstly to investigations of influences of soil microorganism, soil fungal communities, and general phage on R. solanacearum survival in soil. Soil microorganisms, such as earthworm and mite are important components of the soil food web, which can significantly change the above-mentioned biotic factors of R. solanacearum in soil together with soil structure. Secondly, it is essential to clarify how R. solanacearum dynamic in soil responds to climate change. Climate change, such as warming and drought can directly influence R. solanacearum survival by regulating soil temperature and moisture, and indirectly by affecting growth of the host plants. Thirdly, mathematical models should be constructed as soon as possible for predicting survival rate of R. solanacearum in soil. This is essential due to the multifarious nature and complexity of the factors influencing R. solanacearum survival in soils. Hence, mathematical models might be the only tools to clearly assess these elements with designed objects and parameters. The models can even assess relative contribution of each factor to R. solanacearum survival separately under certain conditions and further distinguish key influencing factors. And fourthly, it is important to comprehensively investigate influencing factors while controlling the soil-borne disease in the field. This is a result of manipulating the factors influencing R. solanacearum survival in soil. At the end, more, attention should be paid to irrigation schemes. Irrigation may significantly affect effectiveness of the measures or practices of preventing the bacterial wilt due to its substantial R. solanacearum introduction to the field.



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭