甲烷水蒸气重整制氢研究进展

您所在的位置:网站首页 甲烷变为碳 甲烷水蒸气重整制氢研究进展

甲烷水蒸气重整制氢研究进展

2024-07-09 21:36:03| 来源: 网络整理| 查看: 265

3 甲烷水蒸气重整过程中催化剂的研究

甲烷水蒸气重整为吸热反应,通过热力学分析可知,该反应需要在高温、高水碳比、低压下进行,若没有催化剂参与,则该重整过程反应速率缓慢。因此,催化剂对于甲烷水蒸气重整制氢反应过程非常重要。

Dan等[72]采用共沉淀法制备了Ni/Al2O3、Ni/MgO-Al2O3、Ni/La2O3-Al2O3 3种催化剂应用于甲烷水蒸气重整过程,得出催化剂催化活性按照Ni/Al2O3<Ni/La2O3-Al2O3≈Ni/MgO-Al2O3顺序排列。Kdor等[73]对Ni/Al2O3中掺杂Au的催化剂活性进行分析,结果表明,加入Au成分可以很好地抑制甲烷水蒸气重整反应中炭沉积的形成。Eunkyung等[74]对蛋壳型Ni负载在MgAl2O4催化剂进行研究,发现蛋壳型催化剂的稳定性与抗积炭能力比普通催化剂好。Lu等[75]对甲烷水蒸气在Ni/Al2O3、Ni/γ-Al2O3-MgO、Ni-CeO2/γ-Al2O3-MgO 3种催化剂上的重整反应过程进行研究,结果表明,Ni-CeO2/γ-Al2O3-MgO的催化效率最佳。Yu等[76]研究了采用共沉淀、溶胶-凝胶、醇解3种方法制备的Ni/MgAl2O4催化剂对甲烷水蒸气重整制氢过程的影响,结果表明,采用溶胶-凝胶法制备的催化剂具有较高的活性和抗积炭能力。Dmitry[77]模拟研究了甲烷水蒸气在经过预热的Ni基催化剂上的重整反应过程,得出催化剂床层在1 300 K时,反应中合成气组分达到平衡。Gao等[78]研究了甲烷水蒸气在Ni-Ce/ZSM-5催化剂上的重整反应,得出在该催化剂下甲烷转化率可达到95%,同时,该催化剂可以保持40 h的活性。Ambrosetti等[79]基于甲烷水蒸气在Rh/Al2O3催化剂表面进行的重整反应过程提出一种新的反应动力学,该动力学可以准确地表述甲烷水蒸气重整反应过程。Lee等[80]研究了甲烷水蒸气在Ni/K2TixOyAl2O3催化剂表面进行的反应,结果表明,与Ni/Al2O3相比,Ni/K2TixOyAl2O3催化剂的稳定性及抗积炭能力更好。Hiramitsu等[81]研究了甲烷水蒸气在蜂窝状纯镍催化剂表面进行重整反应,结果表明,重整过程可以使甲烷转化率达到97%,同时,催化剂表面几乎不会产生炭沉积。Yang等[82]对不同铈含量的Ni-Ce/Al2O3催化甲烷水蒸气重整过程进行研究,结果表明,在催化剂中添加含量合适的铈才具有最佳的催化性能。Wang等[83]开发出活性高、性能稳定、抗积炭能力强的Rh/MgO-Al2O3催化剂用于甲烷水蒸气重整反应。

综上所述,在甲烷部分氧化反应过程中贵金属的积炭量顺序为Pd>>Rh>Ru>Pt>Ir。对于非贵金属Fe、Co、Ni负载于载体Al2O3上的催化剂,研究结果表明,Ni催化剂活性及抗积炭能力好。相比价格昂贵的贵金属催化剂,非贵金属催化剂在工业上应用广泛,虽然催化剂成分不同,但为了防止催化剂表面积炭,通常会在催化剂中加入某种助剂。因此,制备活性高、性能稳定、抗积炭能力强的催化剂成为甲烷水蒸气重整制氢的重要研究方向。

4 结论与展望

甲烷水蒸气重整制氢作为一种有效的制氢方法,可以解决温室气体的排放与清洁能源获取的问题。甲烷水蒸气重整制取合成气在能源与环境方面具有重要意义。随着近年来研究的不断深入,甲烷水蒸气重整的实验方法与测试技术不断完善,其研究取得了很大进展,但对其反应机理仍存在很大的争议,今后的研究应基于热力学软件对甲烷水蒸气重整制氢过程的反应特性进行模拟计算,通过优化工况参数确定最佳反应条件,探索反应机理,为甲烷水蒸气重整的工业生产提供理论指导。对于甲烷水蒸气重整反应器的选择,在考虑成本的同时,还要得到高纯度的产物。此外,对于催化剂的研究应寻求操作方法简单、价格低廉、原料储量丰富、可以获得高活性材料的研究方法,并探求催化剂与化学反应之间的关系,进而制备出活性高、性能稳定、抗积炭能力强的催化剂,这是目前需要解决的主要问题。

参考文献 [1] ALTAMASH T, KHRAISHEH M, QURESHI M F. Investigating the effects of mixing ionic liquids on their density, decomposition temperature, and gas absorption[J]. Chemical Engineering Research and Design, 2019, 148: 251-259. DOI:10.1016/j.cherd.2019.06.028 [2] WANG B H, ZHANG H R, YUAN M, et al. Sustainable crude oil transportation: design optimization for pipelines considering thermal and hydraulic energy consumption[J]. Chemical Engineering Research and Design, 2019, 151: 23-39. DOI:10.1016/j.cherd.2019.07.034 [3] CERRILLO-BRIONES I M, RICARDEZ-SANDOVAL L A. Robust optimization of a post-combustion CO2 capture absorber column under process uncertainty[J]. Chemical Engineering Research and Design, 2019, 144: 386-396. DOI:10.1016/j.cherd.2019.02.020 [4] BARELLI L, BIDINI G, GALLORINI F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review[J]. Energy, 2008, 33(4): 554-570. DOI:10.1016/j.energy.2007.10.018 [5] SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/La-Al2O3 catalysts: influence of lanthanum loading[J]. Catalysis Today, 2007, 129(3/4): 336-345. [6] ELIEZER D, ELIAZ N, SENKOV O N, et al. Positive effects of hydrogen in metals[J]. Materials Science and Engineering: A, 2000, 280(1): 220-224. DOI:10.1016/S0921-5093(99)00670-X [7] DUPONT V. Steam reforming of sunflower oil for hydrogen gas production[J]. HELIA, 2007, 30(46): 103-132. DOI:10.2298/HEL0746103D [8] DAMLE A S. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-experimental studies[J]. Journal of Power Sources, 2009, 186(1): 167-177. DOI:10.1016/j.jpowsour.2008.09.059 [9] KANG I, BAE J, BAE G. Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications[J]. Journal of Power Sources, 2006, 163(1): 538-546. DOI:10.1016/j.jpowsour.2006.09.035 [10] LI W M, CHENG C, HE L, et al. Effects of feedstock and pyrolysis temperature of biochar on promoting hydrogen production of ethanol-type fermentation[J]. Science of the Total Environment, 2021, 790: 148206. DOI:10.1016/j.scitotenv.2021.148206 [11] SAKA C, BALBAY A. Oxygen and nitrogen-functionalized porous carbon particles derived from hazelnut shells for the efficient catalytic hydrogen production reaction[J]. Biomass and Bioenergy, 2021, 149: 106072. DOI:10.1016/j.biombioe.2021.106072 [12] LV J, AO X, LI Q, et al. Steam co-gasification of different ratios of spirit-based distillers grains and anthracite coal to produce hydrogen-rich gas[J]. Bioresource Technology, 2019, 283: 59-66. DOI:10.1016/j.biortech.2019.03.047 [13] HESENOV A, MERYEMOĜLU B, IÇTEN O. Electrolysis of coal slurries to produce hydrogen gas: effects of different factors on hydrogen yield[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12249-12258. DOI:10.1016/j.ijhydene.2011.06.134 [14] ZHENG Y, CHEN Z W, ZHANG J J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels[J]. Electrochemical Energy Reviews, 2021, 4(3): 508-517. DOI:10.1007/s41918-021-00097-4 [15] CHAKIK F E, KADDAMI M, MIKOU M. Effect of operating parameters on hydrogen production by electrolysis of water[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25550-25557. DOI:10.1016/j.ijhydene.2017.07.015 [16] FAHEEM H H, TANVEER H U, ABBAS S Z, et al. Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production[J]. Fuel, 2021, 297: 120769. DOI:10.1016/j.fuel.2021.120769 [17] 孙杰, 孙春文, 李吉刚, 等. 甲烷水蒸气重整反应研究进展[J]. 中国工程科学, 2013, 15(2): 98-106. DOI:10.3969/j.issn.1009-1742.2013.02.015 [18] WANG M M, TAN X Y, MOTUZAS J, et al. Hydrogen production by methane steam reforming using metallic nickel hollow fiber membranes[J]. Journal of Membrane Science, 2021, 620: 118909. DOI:10.1016/j.memsci.2020.118909 [19] XIA Y M, WANG S, SHI C, et al. Research progress of thermodynamic simulation for methane dry reforming[J]. Academic Journal of Engineering and Technology Science, 2020, 3(1): 101-109. [20] TAO X M, BAI M G, LI X, et al. CH4–CO2 reforming by plasma–challenges and opportunities[J]. Progress in Energy and Combustion Science, 2011, 37(2): 113-124. DOI:10.1016/j.pecs.2010.05.001 [21] 柯昌明. 甲烷水汽重整动力学研究及抗积碳催化剂设计[D]. 合肥: 中国科学技术大学, 2020. [22] ABBAS S Z, DUPONT V, MAHMUD T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor[J]. International Journal of Hydrogen Energy, 2017, 42(5): 2889-2903. DOI:10.1016/j.ijhydene.2016.11.093 [23] NGUYEN V N, DEJA R, PETERS R, et al. Methane/steam global reforming kinetics over the Ni/YSZ of planar pre-reformers for SOFC systems[J]. Chemical Engineering Journal, 2016, 292: 113-122. DOI:10.1016/j.cej.2016.01.087 [24] MINETTE F, LUGO-PIMENTEL M, MODROUKAS D, et al. Intrinsic kinetics of steam methane reforming on a thin, nanostructured and adherent Ni coating[J]. Applied Catalysis B: Environmental, 2018, 238: 184-197. DOI:10.1016/j.apcatb.2018.07.015 [25] WANG F, QI B, WANG G Q, et al. Methane steam reforming: kinetics and modeling over coating catalyst in micro-channel reactor[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5693-5704. DOI:10.1016/j.ijhydene.2013.03.052 [26] KIM T W, PARK J C, LIM T H, et al. The kinetics of steam methane reforming over a Ni/γ-Al2O3 catalyst for the development of small stationary reformers[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4512-4518. DOI:10.1016/j.ijhydene.2015.02.014 [27] CHEN K, ZHAO Y J, ZHANG W D, et al. The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1615-1628. DOI:10.1016/j.ijhydene.2019.11.080 [28] OCHOA-FERNÁNDEZ E, RUSTEN H K, JAKOBSEN H A, et al. Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: sorption kinetics and reactor simulation[J]. Catalysis Today, 2005, 106(1/4): 41-46. [29] BURGER T, DONAUBAUER P, HINRICHSEN O. On the kinetics of the co-methanation of CO and CO2 on a co-precipitated Ni-Al catalyst[J]. Applied Catalysis B: Environmental, 2021, 282: 119408. DOI:10.1016/j.apcatb.2020.119408 [30] 李培俊, 曹军, 王元华, 等. 甲烷水蒸气重整制氢反应及其影响因素的数值分析[J]. 化工进展, 2015, 34(6): 1588-1594. [31] WANG J Y, WEI S S, WANG Q W, et al. Transient numerical modeling and model predictive control of an industrial-scale steam methane reforming reactor[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15241-15256. DOI:10.1016/j.ijhydene.2021.02.123 [32] LEE S, LIM H. Utilization of CO2 arising from methane steam reforming reaction: use of CO2 membrane and heterotic reactors[J]. Journal of Industrial and Engineering Chemistry, 2020, 91: 201-212. DOI:10.1016/j.jiec.2020.08.001 [33] TARIQ R, MAQBOOL F, ABBAS S Z. Small-scale production of hydrogen via auto-thermal reforming in an adiabatic packed bed reactor: parametric study and reactor's optimization through response surface methodology[J]. Computers & Chemical Engineering, 2021, 145: 107192. [34] YUAN Q Y, GU R, DING J, et al. Heat transfer and energy storage performance of steam methane reforming in a tubular reactor[J]. Applied Thermal Engineering, 2017, 125: 633-643. DOI:10.1016/j.applthermaleng.2017.06.044 [35] HUANG W J, YU C T, SHEU W J, et al. The effect of non-uniform temperature on the sorption-enhanced steam methane reforming in a tubular fixed-bed reactor[J]. International Journal of Hydrogen Energy, 2021, 46(31): 16522-16533. DOI:10.1016/j.ijhydene.2020.07.182 [36] GU R, DING J, WANG Y R, et al. Heat transfer and storage performance of steam methane reforming in tubular reactor with focused solar simulator[J]. Applied Energy, 2019, 233/234: 789-801. DOI:10.1016/j.apenergy.2018.10.072 [37] SOLSVIK J, HAUG-WARBERG T, JAKOBSEN H A. Implementation of chemical reaction equilibrium by Gibbs and Helmholtz energies in tubular reactor models: application to the steam-methane reforming process[J]. Chemical Engineering Science, 2016, 140: 261-278. DOI:10.1016/j.ces.2015.10.011 [38] ZHANG C, CHANG X F, DONG X L, et al. The oxidative stream reforming of methane to syngas in a thin tubular mixed-conducting membrane reactor[J]. Journal of Membrane Science, 2008, 320(1/2): 401-406. [39] QIN Z F, ZHAO Y J, YI Q, et al. Methanation of coke oven gas over Ni-Ce/γ-Al2O3 catalyst using a tubular heat exchange reactor: pilot-scale test and process optimization[J]. Energy Conversion and Management, 2020, 204: 112302. DOI:10.1016/j.enconman.2019.112302 [40] GOKON N, NAKAMURA S, MATSUBARA K, et al. Carbonate molten-salt absorber/reformer: heating and steam reforming performance of reactor tubes[J]. Energy Procedia, 2014, 49: 1940-1949. DOI:10.1016/j.egypro.2014.03.206 [41] 刘峰, 姜培学, HE S. 催化剂薄层内甲烷水蒸气重整反应强化管内对流换热的数值模拟[J]. 工程热物理学报, 2006, 27(6): 987-989. DOI:10.3321/j.issn:0253-231X.2006.06.027 [42] 毛志方, 姜培学, 刘峰. 甲烷水蒸气重整强化管内换热的数值模拟[J]. 航空动力学报, 2011, 26(3): 563-569. [43] 张力, 张苗, 闫云飞. 定壁温下甲烷自热重整产氢暂态特性数值模拟[J]. 热能动力工程, 2012, 27(1): 112-116. [44] GALLUCCI F, PATURZO L, BASILE A. A simulation study of the steam reforming of methane in a dense tubular membrane reactor[J]. International Journal of Hydrogen Energy, 2004, 29(6): 611-617. DOI:10.1016/j.ijhydene.2003.08.003 [45] LEONZIO G. ANOVA analysis of an integrated membrane reactor for hydrogen production by methane steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11535-11545. DOI:10.1016/j.ijhydene.2019.03.077 [46] LEE S M, HWANG I H, KIM S S. Enhancement of catalytic performance of porous membrane reactor with Ni catalyst for combined steam and carbon dioxide reforming of methane reaction[J]. Fuel Processing Technology, 2019, 188: 197-202. DOI:10.1016/j.fuproc.2019.02.023 [47] GIACONIA A, IAQUANIELLO G, CAPUTO G, et al. Experimental validation of a pilot membrane reactor for hydrogen production by solar steam reforming of methane at maximum 550 ℃ using molten salts as heat transfer fluid[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33088-33101. DOI:10.1016/j.ijhydene.2020.09.070 [48] WU H C, RUI Z B, LIN J Y S. Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane[J]. Journal of Membrane Science, 2020, 598: 117780. DOI:10.1016/j.memsci.2019.117780 [49] ANZELMO B, WILCOX J, LIGUORI S. Natural gas steam reforming reaction at low temperature and pressure conditions for hydrogen production via Pd/PSS membrane reactor[J]. Journal of Membrane Science, 2017, 522: 343-350. DOI:10.1016/j.memsci.2016.09.029 [50] ALAM S, KUMAR J P, RANI K Y, et al. Self-sustained process scheme for high purity hydrogen production using sorption enhanced steam methane reforming coupled with chemical looping combustion[J]. Journal of Cleaner Production, 2017, 162: 687-701. DOI:10.1016/j.jclepro.2017.05.136 [51] DIGLIO G, HANAK D P, BARESCHINO P, et al. Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell[J]. Applied Energy, 2018, 210: 1-15. DOI:10.1016/j.apenergy.2017.10.101 [52] MARÍN P, PATIÑO Y, DÍEZ F V, et al. Modelling of hydrogen perm-selective membrane reactors for catalytic methane steam reforming[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18433-18445. DOI:10.1016/j.ijhydene.2012.08.147 [53] ALAMDARI A. Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 934-944. DOI:10.1016/j.jngse.2015.09.037 [54] WANG F Q, TAN J Y, JIN H J, et al. Thermochemical performance analysis of solar driven CO2 methane reforming[J]. Energy, 2015, 91: 645-654. DOI:10.1016/j.energy.2015.08.080 [55] YUAN J L, LV X R, SUNDÉN B, et al. Analysis of parameter effects on transport phenomena in conjunction with chemical reactions in ducts relevant for methane reformers[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3887-3898. DOI:10.1016/j.ijhydene.2007.05.037 [56] YU W, OHMORI T, KATAOKA S, et al. A comparative simulation study of methane steam reforming in a porous ceramic membrane reactor using nitrogen and steam as sweep gases[J]. International Journal of Hydrogen Energy, 2008, 33(2): 685-692. DOI:10.1016/j.ijhydene.2007.10.015 [57] WANG F Q, SHUAI Y, WANG Z Q, et al. Thermal and chemical reaction performance analyses of steam methane reforming in porous media solar thermochemical reactor[J]. International Journal of Hydrogen Energy, 2014, 39(2): 718-730. DOI:10.1016/j.ijhydene.2013.10.132 [58] SHI X H, WANG F Q, CHENG Z M, et al. Numerical analysis of the biomimetic leaf-type hierarchical porous structure to improve the energy storage efficiency of solar driven steam methane reforming[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17653-17665. DOI:10.1016/j.ijhydene.2021.02.171 [59] DE LIMA K P, DA FONSECA DIAS V, DA SILVA J D. Numerical modelling for the solar driven bi-reforming of methane for the production of syngas in a solar thermochemical micro-packed bed reactor[J]. International Journal of Hydrogen Energy, 2020, 45(17): 10353-10369. DOI:10.1016/j.ijhydene.2019.08.241 [60] SHI X H, ZHANG X P, WANG F Q, et al. Thermochemical analysis of dry methane reforming hydrogen production in biomimetic venous hierarchical porous structure solar reactor for improving energy storage[J]. International Journal of Hydrogen Energy, 2021, 46(11): 7733-7744. DOI:10.1016/j.ijhydene.2020.12.034 [61] CHUAYBOON S, ABANADES S, RODAT S. Solar chemical looping reforming of methane combined with isothermal H2O/CO2 splitting using ceria oxygen carrier for syngas production[J]. Journal of Energy Chemistry, 2020, 41: 60-72. DOI:10.1016/j.jechem.2019.05.004 [62] WANG F Q, GUAN Z N, TAN J Y, et al. Unsteady state thermochemical performance analyses of solar driven steam methane reforming in porous medium reactor[J]. Solar Energy, 2015, 122: 1180-1192. DOI:10.1016/j.solener.2015.10.031 [63] XU F, WANG Y M, LI F, et al. Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrierdischarge[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 367-373. DOI:10.1016/S1872-5813(21)60022-1 [64] CARAPELLUCCI R, GIORDANO L. Steam, dry and autothermal methane reforming for hydrogen production: a thermodynamic equilibrium analysis[J]. Journal of Power Sources, 2020, 469: 228391. DOI:10.1016/j.jpowsour.2020.228391 [65] POURALI M, ESFAHANI J A, SADEGHI M A, et al. Simulation of methane steam reforming in a catalytic micro-reactor using a combined analytical approach and response surface methodology[J]. International Journal of Hydrogen Energy, 2021, 46(44): 22763-22776. DOI:10.1016/j.ijhydene.2021.04.124 [66] WANG J Y, YANG J, SUNDEN B, et al. Hydraulic and heat transfer characteristics in structured packed beds with methane steam reforming reaction for energy storage[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105109. DOI:10.1016/j.icheatmasstransfer.2021.105109 [67] LIN K W, WU H W. Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11593-11604. DOI:10.1016/j.ijhydene.2020.02.127 [68] WU Z H, WANG J Y, XIE B J, et al. Methane steam reforming with axial variable diameter particle structures in grille-sphere composite packed bed: a numerical study of hydrogen production performance[J]. Energy Conversion and Management, 2021, 240: 114163. DOI:10.1016/j.enconman.2021.114163 [69] MAQBOOL F, ABBAS S Z, RAMIREZ-SOLIS S, et al. Modelling of one-dimensional heterogeneous catalytic steam methane reforming over various catalysts in an adiabatic packed bed reactor[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5112-5130. DOI:10.1016/j.ijhydene.2020.11.071 [70] BULFIN B, ACKERMANN S, FURLER P, et al. Thermodynamic comparison of solar methane reforming via catalytic and redox cycle routes[J]. Solar Energy, 2021, 215: 169-178. DOI:10.1016/j.solener.2020.11.076 [71] WANG H S, HAO Y. Thermodynamic study of solar thermochemical methane steam reforming with alternating H2 and CO2 permeation membranes reactors[J]. Energy Procedia, 2017, 105: 1980-1985. DOI:10.1016/j.egypro.2017.03.570 [72] DAN M, MIHET M, BORODI G, et al. Combined steam and dry reforming of methane for syngas production from biogas using bimodal pore catalysts[J]. Catalysis Today, 2021, 366: 87-96. DOI:10.1016/j.cattod.2020.09.014 [73] DE OLIVEIRA ROCHA K, MARQUES C M P, BUENO J M C. Effect of Au doping of Ni/Al2O3 catalysts used in steam reforming of methane: mechanism, apparent activation energy, and compensation effect[J]. Chemical Engineering Science, 2019, 207: 844-852. DOI:10.1016/j.ces.2019.06.049 [74] CHO E, YU Y J, KIM Y, et al. Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: enhanced coke-resistance and pellet stability[J]. Catalysis Today, 2020, 352: 157-165. DOI:10.1016/j.cattod.2019.11.013 [75] LU Q, HOU Y, LARAIB S R, et al. Electro-catalytic steam reforming of methane over Ni-CeO2/γ-Al2O3-MgO catalyst[J]. Fuel Processing Technology, 2019, 192: 57-64. DOI:10.1016/j.fuproc.2019.04.021 [76] YU S Y, HU Y W, CUI H J, et al. Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane[J]. Chemical Engineering Science, 2021, 232: 116379. DOI:10.1016/j.ces.2020.116379 [77] PASHCHENKO D. Numerical study of steam methane reforming over a pre-heated Ni-based catalyst with detailed fluid dynamics[J]. Fuel, 2019, 236: 686-694. DOI:10.1016/j.fuel.2018.09.033 [78] GAO N B, CHENG M X, QUAN C, et al. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst[J]. Fuel, 2020, 273: 117702. DOI:10.1016/j.fuel.2020.117702 [79] AMBROSETTI M, BONINCONTRO D, BALZAROTTI R, et al. H2 production by methane steam reforming over Rh/Al2O3 catalyst packed in Cu foams: a strategy for the kinetic investigation in concentrated conditions[J]. Catalysis Today, 2021. DOI:10.1016/j.cattod.2021.06.003 [80] LEE S Y, LIM H, WOO H C. Catalytic activity and characterizations of Ni/K2TixOy-Al2O3 catalyst for steam methane reforming[J]. International Journal of Hydrogen Energy, 2014, 39(31): 17645-17655. DOI:10.1016/j.ijhydene.2014.08.014 [81] HIRAMITSU Y, DEMURA M, XU Y, et al. Catalytic properties of pure Ni honeycomb catalysts for methane steam reforming[J]. Applied Catalysis A: General, 2015, 507: 162-168. DOI:10.1016/j.apcata.2015.09.044 [82] YANG X, DA J W, YU H T, et al. Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process[J]. Fuel, 2016, 179: 353-361. DOI:10.1016/j.fuel.2016.03.104 [83] WANG Y, CHIN Y H, ROZMIAREK R T, et al. Highly active and stable Rh/MgO-Al2O3 catalysts for methane steam reforming[J]. Catalysis Today, 2004, 98(4): 575-581. DOI:10.1016/j.cattod.2004.09.011


【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭