砾岩沉积与构造环境

您所在的位置:网站首页 怎么打破岩石的沉积 砾岩沉积与构造环境

砾岩沉积与构造环境

2024-07-10 23:31:17| 来源: 网络整理| 查看: 265

摘要

砾岩是沉积大地构造和盆地研究的重点内容,它不仅记录了物源区的岩石组成,而且在一定程度上反映区域构造演化过程。砾岩形成于不同沉积和构造环境,主要发育在冲积扇、辫状河、扇三角洲和水下扇等沉积体系内。地层中的砾岩层被认为是强烈构造活动的沉积响应,因此常用来限定构造带挤压逆冲和构造抬升的时间和剥蚀过程。然而,这种简单的线性因果思维方式在盆-山体系研究中可能导致错误的构造解释。砾岩沉积过程和空间分布受多种因素制约,包括盆地沉降速率、盆缘构造活动性质、物源区岩石组成、沉积物搬运途径以及气候条件和变化等。合理恢复和解释盆缘构造历史应对砾岩沉积体的时空变化进行详细分析,不应简单地将砾岩沉积与构造活动在成因上直接对应。本文对砾岩沉积环境进行了简要总结,讨论了大陆伸展、挤压和走滑构造环境下砾岩沉积过程以及如何根据砾岩沉积的时空变化来恢复区域构造活动。笔者对“磨拉石”术语的使用进行了讨论,建议避免用该术语来概括不同构造环境下形成的砾岩或粗粒碎屑沉积。

Abstract

Rudite has been the main focus of sedimentary tectonics in that it not only records the detailed constituents of provenances but also reflects tectonic activity in adjacent structural/orogenic belts. Conglomeratic sedimentation occurs in a variety of depositional and tectonic environments, and conglomerates are mostly preserved in diverse alluvial fans, fan-deltas and deep-water fans. Occurrence of conglomeratic facies in stratigraphic successions is commonly taken as a hallmark of tectonic activity, and therefore utilized to constrain both the ages of thrusting/folding and the phases of uplifting and erosion. However, the simple, linear and cause-and-effect rationale of relationships between tectonic activity and conglomerate sedimentation is not often justified, and could lead to misinterpretations of tectonic processes. Sedimentation of conglomerate facies are governed by a number of controlling factors, with subsidence rates probably exerting a primary control on depositional processes and spatial distribution. Subsidence rates are governed by the intensity of tectonic activities at basin edges and conglomerate deposition will also vary in time and space in response to tectonic alternation. Accordingly, the spatiotemporal variations of conglomeratic facies characteristics can provide important clues for restoring tectonic processes at basin margins. This paper offers a brief review of both sedimentary and tectonic environments of rudites, and discusses how the time-space variations of conglomeratic facies are utilized to infer tectonic evolution of basin margins in extensional, contractional and pull-apart settings. The term “molasse” is defined differently in the Chinese literature, and often taken as conglomeratic facies. Based on brief evaluation and discussion of vague usage of “molasse”, it is suggested that the term molasse with tectonic connotation should not be used to cover all types of rudites.

关键词

砾岩 ; 沉积环境 ; 盆地构造 ; 沉积大地构造 ; 磨拉石

Keywords

rudite ; depositional environments ; basin tectonics ; tectonic sedimentology ; molasse

砾岩仅占地表沉积体的1%~2%,却是沉积大地构造和盆地研究的重点(Heller and Paola,1992; Tucker and Slingerland,1996; Simpson,2006; Allen and Heller,2012)。对砾岩的关注主要源于两个方面:砾岩的砾石成分可直接反映物源区岩石组合,因此成为追索和限定物源区及其变化的重要载体; 砾岩沉积和空间分布反映区域构造作用,因此成为推断构造带活动时间和抬升/剥蚀过程的重要标记(Alexander and Leeder,1987; Heller et al.,1988; Jordan et al.,1988)。受不同构造作用的控制,砾岩沉积发生在不同沉积体系和不同类型盆地中(Miall,1978; Koster and Steel,1984)。在简单构造环境下,砾岩沉积可反映相邻构造带抬升历史。然而,在重建经历长期演化的大型古老造山带或在恢复大区域复杂构造演化历史时,这种线性思维方式则过于简单,因为砾岩可能经历了复杂的再沉积和再循环过程(Allen and Heller,2012)。如果砾石在由源到汇的搬运过程中经历了多旋回沉积(Allen,2008),砾石所携带的早期构造和古气候信息可能已经大部分消失或发生了很大改变,因此不能直接用于恢复物源区的岩石组成、抬升时间以及风化剥蚀过程。另外,砾岩沉积体的时空分布和厚度变化受多种因素控制,在许多情况下不能简单地把砾岩沉积与相邻构造带隆升在成因上直接关联起来。许多分布广阔的砾岩实际上是在构造宁静期沉积的,是造山带发生强烈剥蚀和相邻盆地可容空间减小共同造成的结果(Blair and Bilodeau,1988; Heller et al.,1988,Plaola,1988)。“磨拉石”是地质文献中一个常见术语,研究者乐于使用该术语是因为它有构造内涵(Miall,1984)。一些中文文献扩展了“磨拉石”含义(夏邦栋等,1989; 周鼎武等,1996),与欧洲地质学家对“磨拉石”的定义和使用存在较大差别。本文对砾岩形成的沉积和构造环境进行了综合分析,讨论了砾岩在盆地分析和造山带演化研究中的意义。

1 砾岩和沉积环境 1.1 砾岩分类

粒径>2 mm的碎屑颗粒称为砾石(gravel),当碎屑岩中砾石含量>30%,该碎屑岩定义为砾岩(Folk,1974)。英文文献中,rudite是砾岩的总称。如果砾岩砾石具一定磨圆度,称为砾岩(conglomerate); 如果砾石呈明显棱角状,称为角砾岩(breccia)。目前存在多种砾岩分类,在实际应用中不同分类方案可相互结合共同描述砾岩特征。图1展示根据砾岩砾石大小、结构和成分等特征对砾岩的划分(Boggs,2009; Prothero and Schwab,2014)。依据砾石粒径的大小可将砾岩划分为细(角)砾岩(2~4 mm)、中(角)砾岩(4~64 mm)、粗(角)砾岩(64~256 mm)和巨(角)砾岩(>256 mm)。根据砾岩结构特征可将砾岩划分为两种类型,即正砾岩和副砾岩(Pettijohn,1975)。正砾岩具颗粒支撑结构,基质含量 <15%; 副砾岩为基质支撑结构,基质含量 >15%。依据砾岩砾石成分可将砾岩分为单成分砾岩和复成分砾岩。单成分砾岩的砾石为抗风化稳定岩石,如石英岩,脉石英、燧石等; 复成分砾岩的砾石成分多为不稳定易风化岩石,如基性岩、灰岩、泥质岩等。在实际工作中可将砾岩各种特征结合起来详细描述砾岩,如“颗粒支撑石英质单成分粗砾岩”。

1.2 砾岩沉积环境

砾岩形成于多种沉积环境,不同属性流体和沉积过程可产生不同类型砾岩。恢复砾岩沉积过程和沉积环境主要依据野外观察和岩相分析。在陆相环境,砾岩主要发育在冲积扇与河流沉积体系内。冲积扇发生在山麓地带,其规模与其流域盆地大小以及气候和气候变化相关(Blair and McPherson,1994; Collinson,1996; Mack and Leeder,1999; Harvey et al.,2005)。依据主控流体类型,冲积扇可划分为碎屑流冲积扇、片流冲积扇和辫状河冲积扇(图2a)。碎屑流冲积扇规模较小,扇径数百米,主要由碎屑流沉积的砾岩和角砾岩构成。砾岩多为副砾岩,块状无分选。碎屑流冲积扇虽规模较小,但它们可沿山麓侧向连接,形成狭窄的冲积扇裙。伸展断陷盆地和挤压挠曲盆地的近源砾岩楔多由碎屑流冲积扇沉积组成。片流冲积扇主要由片流形成的砾岩和角砾岩构成,砾岩发育平行层理和低角度交错层,扇径变化在1~10 km。片流冲积扇与较大的流域盆地相接,因此有充足的沉积物供给(Blair and McPherson,1994)。辫状河冲积扇主要由辫状水道砾岩和粗砂岩建造而成,砾岩和砂岩发育平行层理和交错层,沉积作用与河流相关。辫状河冲积扇的扇径可达数十千米。曲流河水道也发育砾岩,多形成颗粒支撑正砾岩和单成分砾岩。在海洋与湖泊环境,砾岩形成在滨岸、扇三角洲和水下扇沉积体系内(图2b)。滨岸砾岩由于波浪冲洗,具有极好的分选和磨圆,多为单成分正砾岩(Nemec and Steel,1984)。在扇三角洲和水下扇沉积体系内,砾岩由水下碎屑流沉积形成(Nemec and Steel,1988; Colella and Prior,1990; Richards et al.,1998),多为基质支撑副砾岩,表现为厚层状和分选差,与滑塌角砾岩和浊积岩共生。

图1 依据砾岩砾石大小、结构和成分对砾岩分类(据Boggs,2009; Prothero and Schwab,2014)

Fig.1 Classifications of rudite based on size, texture and composition of gravels (after Boggs, 2009; Prothero and Schwab, 2014)

图2 砾岩沉积环境

Fig.2 Depositional environments of rudite

(a)—大陆环境的砾岩和角砾岩主要发育在冲积扇与河流沉积体系内; 碎屑流和片流冲积扇砾岩多为块状、厚层和基质支撑; 辫状河冲积扇砾岩/角砾岩发育平行层理和低角度交错层; 曲流河水道砾岩多为颗粒支撑,发育交错层和平行层理,与交错层砂岩共生;(b)—水下砾岩由碎屑流沉积形成,多发育在扇三角洲前缘斜坡和水下扇体系; 盆地斜坡重力垮塌可产生滑塌角砾岩

(a) —Conglomerate and breccia mainly occur in alluvial and fluvial systems in continental settings; rudites in debris-flow and sheetflood fans are usually massive/thick-bedded and matrix-supported, whereas braided channel fans are featured by conglomerates with parallel and low-angle cross bedding; clast-supported orthoconglomerates with parallel and cross stratifications are deposited in channels of meandering rivers, and associated closely with cross-bedded sandstone facies; (b) —subaqueous conglomerates are deposited mostly by debris flows in fan-deltaic and deepwater fans, and often coexist with breccia resulting from slumping at basin slope

2 砾岩形成的构造环境

砾岩沉积主要受构造活动的控制(Nemec and Steel,1988; Frostick and Reid,1989; Allen and Hovius,1998; Densmore et al.,2007; Whittaker et al.,2010),虽然气候条件和气候变化对砾岩沉积过程也可产生重大影响(Frostick and Reid,1989; Bull,1991; Molnar,2001; Zhang et al.,2001; Quigley et al.,2007; Whipple,2009)。构造作用造成地貌差异和产生不同类型盆-山组合。伸展断裂不仅导致盆地沉降,而且诱发盆缘翘升和下盘基底岩石剥露,成为裂谷盆地的物源区(Gawthorpe and Leeder,2000); 挤压推覆作用导致前陆盆地发生挠曲沉降,同时造山带缩短增厚也造成地表抬升和深部岩石的不断剥露,成为相邻挤压盆地沉积的重要物源区(Flemings and Jordan,1989); 走滑断裂活动比较复杂,沿断裂带局部应力场的变化可形成不同类型盆地(Nilsen and Sylvester,1995)。在构造和气候的共同影响下,物源区产生的粗碎屑经过复杂的搬运路径最终到达盆地形成砾岩。砾石从源区到汇聚盆地的运移可能经历了搬运—沉积—再搬运—再沉积的多旋回过程(Allen,2008)。认真识别砾岩是否经历了多旋回沉积过程,对恢复砾岩沉积与构造活动之间成因联系十分重要。下面简要讨论伸展、挤压和走滑构造环境下盆缘断裂活动、盆地构造沉降、沉积物供给以及它们的时空变迁对砾岩沉积的控制作用。

2.1 伸展盆地砾岩沉积

岩石圈/地壳伸展形成裂谷盆地,其沉降和沉积中心主要受盆地边缘正断层控制。大陆伸展盆地以早期快速沉降为特征(McKenzie,1978),盆地充填层序表现为下部冲积扇/辫状河砾岩向上快速变为湖泊细粒沉积(Prosser,1993)。裂谷盆地发育初期,其边界常发育多个小型正断层(Leeder and Gawthorpe,1987)。随着盆地不断发展,早期独立的盆缘断层侧向生长,相邻断层直接相连或通过协调带(accommodation zone)和转移断层(transfer fault)连接。一些协调带演化为下盘物源区向盆地提供碎屑物的主要通道,在盆地近源区形成横向和纵向冲积扇或扇三角洲体系(Leeder and Jackson,1993; Gawthorpe and Leeder,2000; Whittaker et al.,2010)。

裂谷盆地沉降速率对砾岩沉积具有重要控制作用(Allen and Heller,20 12; Gordon and Heller,1993)。盆地边界断裂沿走向的断裂强度和垂向位错幅度会有很大变化,导致盆地沿走向沉降速率和沉积物可容空间出现明显差异(图3)。强烈活动的边界断层不仅导致上盘快速沉降,同时也造成下盘基岩翘升(Allen and Densmore,2000)。快速沉降增大了盆地可容空间,将来自物源区粗粒沉积物圈闭在盆地近源地带,形成由冲积扇/扇三角洲体系构成的砾岩楔形体(图3a)。在伸展断裂强度较弱的边界断层处(或当边界断裂活动减弱时),盆地沉降速率减缓,盆地可容空间很快被充填。在此情况下,来自物源区的粗粒沉积物可搬运到盆地远端,从而形成广泛分布的砾岩层(图3b)。理解盆地沉降速率对砾岩沉积的控制作用非常重要,它提示我们在恢复古老伸展盆地演化时,不仅要研究砾岩的时代、岩相和沉积环境,而且要关注砾岩层的时空分布和厚度变化,从而合理重建裂谷盆地的构造-沉积历史。

2.2 挤压盆地砾岩沉积

挤压盆地构造沉降是逆冲推覆体形成的构造负载导致下盘发生挠曲的结果(Beaumont,1981; Jordan,1981; Garcia-Castellanos and Cloetingh,2012)。对前陆盆地构造沉降和沉积充填过程开展了大量研究,建立了前陆盆地沉降与沉积过程的理论模型(Allen and Homewood,1986; Flemings and Jordan,1989; Garcia-Castellanos,2002; Sinclair,2012)并提出了前陆盆地体系概念(DeCelles and Giles,1996)。砾岩分析被广泛应用于重建前陆盆地周缘逆冲推覆过程(Heller et al.,1988; Heller and Paola1992; DeCelles et al.,1995; Whipple and Traylor,1996)。前陆盆地砾岩地层的时代常被认为对应于相邻造山带强烈逆冲推覆的时间,即砾岩沉积是逆冲推覆构造活动的沉积响应。这种推测主要基于下述理念,即造山带地壳缩短隆升导致强烈风化剥蚀和碎屑物快速搬运,从而在相邻盆地形成冲积扇体系和砾岩堆积。然而,把盆内砾岩沉积与盆缘构造活动进行简单地对应,或将砾岩沉积解释为强烈挤压构造作用的产物,在一些情况下并不完全合理(Heller et al.,1988; Allen and Heller,2012)。如果冲积扇/扇三角洲沉积体发育在盆地近源区并形成大规模砾岩楔形体,这一现象指示盆地近源区发生了强烈沉降和粗粒沉积物供给充足。这种砾岩沉积过程与盆缘逆冲推覆导致前陆盆地发生强烈挠曲沉降的理论模型一致,因此可利用砾岩/角砾岩的形成时间来限定相邻构造带挤压推覆时代(图4a)。如果盆地中砾岩大范围分布,砾岩砾石具很好磨圆和分选,以及多为颗粒支撑单成分砾岩。这种广泛分布砾岩反映盆地沉降速率缓慢、相邻造山带经受广泛风化剥蚀以及砾石经历长距离搬运等地质过程,它们实际上形成于构造宁静期(图4b)。

图3 大陆伸展盆地砾岩沉积

Fig.3 Conglomerate sedimentation in continental extensional basins

(a)—强烈快速沉降形成大的可容空间和深水湖泊,扇三角洲体系内的砾岩被圈闭在近源沉降中心;(b)—缓慢沉降导致盆地可容空间减小,砾石可长距离搬运到盆地远端,形成广泛分布的河流沉积砾岩

(a) —Intense rapid subsidence creates large accommodation space and promotes formation of deeper lake, with conglomeratic bodies of fan deltaic systems being trapped in proximal areas of basins; (b) —weak slow subsidence leads to the decrease in accommodation space, and gravels can be transported to distal regions of basins by rivers to form broadly distributed conglomerate

图4 前陆盆地砾岩沉积

Fig.4 Conglomerate sedimentation in foreland basins

(a)—逆冲推覆形成的构造负载导致前陆盆地发生挠曲沉降和在近源区产生大的可容空间,冲积扇/扇三角洲砾岩被圈闭在盆地前渊带;(b)—逆冲推覆作用停止或变缓,盆地沉降速率降低和可容空间减小,前陆冲断带大规模风化剥蚀导致粗碎屑物长距离搬运到盆地远端,形成广泛分布的砾岩层

(a) —Tectonic loading due to thrusting results in flexural subsidence of foreland basins and large accommodation space in proximal region; conglomeratic bodies in alluvial fan and fan-deltaic systems are trapped in foredeep zone; (b) —cessation or reduction of thrusting leads to the decrease in subsidence rate and accommodation space; extensive weathering and erosion produce large quantity of coarse-grained sediments that can transport a long distance, forming widely-distributed conglomerate sheets

四川盆地早中生代沉降-沉积中心的时空演变过程可作为一个很好的实例(Meng et al.,2005)。晚三叠世四川盆地受龙门山向东逆冲推覆的控制发生挠曲沉降(Chen et al.,1994; Yong et al.,2003),沉降中心位于龙门山构造带东侧的川西前渊带。上三叠统须家河组在川西前渊带的厚度 >3000 m(图5a),其中碳酸盐岩砾岩也限于在前渊带发育,盆地东部主要为河流相砂岩。早侏罗世四川盆地沉降幅度明显减弱,沉积厚度减小并且侧向变化不大(图5b)。下侏罗统白田坝组以发育单成分正砾岩为特征(图5c,d),表现为颗粒支撑结构,砾石为石英岩和燧石,具极好的磨圆和分选。依据白田坝砾岩高的结构和成分成熟度、广泛空间分布以及较小侧向厚度变化,该套砾岩沉积指示与四川盆地相邻的龙门山和大巴山构造带在早侏罗世处于构造宁静期(Meng et al.,2005)。

2.3 走滑盆地砾岩沉积

大陆走滑断裂带内部和边缘发育各类小型盆地,盆地沉降与走滑断裂的运动过程、几何特征以及位移量直接相关,局部伸展和挤压应变可产生不同类型盆地(Reading,1980; Christie-Blick and Biddle,1985; Sylvester,1988; Nilsen and Sylvester,1995)。拉分盆地(pull-apart basin)是沿走滑断裂带发育的一种伸展盆地,平面形态常表现为菱形或呈狭长形。对拉分盆地的形成和演化已开展了系统研究(Aydin and Nur,1982; Mann et al.,1983; Burchfiel et al.,1989; McClay and Dooley,1995; Wu et al.,2009),揭示其主要特征为:快速伸展断陷(Xie and Heller,2009),缺乏后期热沉降(Allen and Allen,2013)以及演化过程复杂(Christie-Blick and Biddle,1985)。

图5 四川盆地早中生代沉积记录

Fig.5 Early Mesozoic sedimentary records of the Sichuan basin

(a)—上三叠统须家河组沉积等厚图,揭示盆地沉积中心位于龙门山构造带东侧,指示盆地沉降受龙门山构造带向东逆冲推覆的控制;(b)—下侏罗统白田坝组沉积等厚图,盆地缺乏明显沉积中心;(c)—白田坝组辫状河砾岩,剖面高~8 m;(d)—白田坝组颗粒支撑单成分正砾岩,砾石为磨圆度极好的石英岩(据Meng et al.,2005)

(a) —Isopach map of Upper Triassic Xujiahe Formation, showing that depositional center is located to the east of the Longmenshan structural belt and subsidence is governed by east-directed thrusting of the Longmenshan belt; (b) —isopach map of Lower Jurassic Baitianba Formation, showing no distinct depositional center; (c) —the Baitianba conglomerate deposited by braided rivers; exposure~8 m high; (d) —clast-supported oligomict orthoconglomerate with well-rounded quartzite gravels (after Meng et al., 2005)

由于走滑断裂活动的复杂性(Aydin and Nur,1985; Mann,2007; Gürbüz,2010),走滑盆地通常经历了复杂的构造变形和沉积充填过程(Nilsen and Sylvester,1995)。图6展示一类拉分盆地的发展和砾岩沉积过程。拉分盆地形成在左旋走滑带的左阶步处,并且走滑过程导致盆缘断裂不断向左侧迁移(图6a)。盆缘伸展断裂造成盆地快速沉降,在近源区发育冲积扇和扇三角洲体系,形成砾岩楔形体,同时伴随盆缘重力滑塌(图6b)。随着走滑断裂发展,盆缘断裂的侧向迁移也导致冲积扇和扇三角洲粗粒沉积体系随之一起迁移。拉分盆地砾岩沉积(以及其他相组合)因此具有明显穿时性。用砾岩沉积相来限定和恢复拉分盆地演化历史应充分注意这类盆地构造变形和沉积过程的时空发展特点。受走滑断裂活动复杂性的影响,不同走滑盆地的沉降历史和砾岩沉积存在很大差异。在具体研究过程中,不应遵循某一特定走滑盆地的构造-沉积模型。参看和分析美国西部新生代Ridge盆地和挪威西部泥盆纪Hornelen盆地,可进一步了解拉分盆地构造演化和砾岩沉积的复杂关系(Steel et al.,1977; Crowell,1982; Crowell and Link,1982; Nilsen and McLaughlin,1985; May et al.,1993; Anders et al.,2022)。

3 砾岩沉积的时间延迟

盆地砾岩沉积常用来限定相邻造山带的逆冲推覆时间(Nichols,1987; Jordan et al.,1988; DeCelles et al.,1991; Hartley,1993)或裂谷盆地下盘肩部的抬升过程(Leeder and Jackson,1993; Friedrnann and Burbank,1995)。砾岩也因此常被称为 “同构造沉积”。对砾岩沉积与构造活动这种线性相关性的认识主要源于下述假设:构造活动导致地貌差异,抬升的岩石很快遭受风化剥蚀,产生的粗粒碎屑物被搬运到相邻盆地,沉积形成砾岩。然而,砾岩沉积在时间上并不一定对应于盆地边缘构造活动期,因为构造活动造成的地表/岩石抬升并不一定很快导致强烈剥蚀(Montgomery and Brandon,2002)和产生大量粗粒碎屑物(Blair and Bilodeau,1988)。现代造山带平均构造抬升速率是其平均剥蚀(denudation)速率的8倍,在年降水量 <100 cm的地区甚至可达100倍以上(Schümm,1963)。因此,盆缘构造带抬升并不一定“立即”在其流域盆地产生大量粗粒沉积物和在相邻盆地导致砾岩沉积,或者说砾岩的沉积时代通常要晚于盆地边缘构造活动的时间,即存在一个时间延迟(time lag)。延迟时间的长短与盆缘构造带的变形过程、岩石类型、气候条件以及物源区河流系统等因素相关(DeCelles,1988; Tucker and Slingerland,1996; Paola and Swenson,1998; Clift and Blusztajn,2005)。前陆盆地砾岩沉积与前陆逆冲推覆活动之间的延迟时间可达105~106 年(Allen and Heller,2012)。实际上,对盆缘构造活动“敏感”的沉积相应为细粒沉积物,因为构造隆升导致的风化剥蚀可很快产生大量细粒沉积物。由于细粒沉积物易于搬运,因此可在相邻盆地形成 “同构造” 细粒岩相。Blair and Bilodeau(1988)详细阐述了盆地细粒沉积物与构造活动期之间的成因联系。

图6 拉分盆地构造发展与砾岩沉积过程

Fig.6 Structural development and depositional processes of conglomeratic bodies of a pull-apart basin

(a)—左旋走滑在左阶步处形成拉分盆地,圆圈中的数字表示断裂发展顺序;(b)—盆地三维模型,显示拉分盆地构造发展与砾岩沉积体的侧向迁移

(a) —A pull-apart basin develops at a left stepover along left-lateral strike-slip fault; leftward migration of border faults is indicated by circled numbers; (b) —a3D model showing structural development of a pull-apart basin and lateral shifting of conglomerate deposition

砾岩沉积与盆缘构造活动在时间上的关系受多种因素的控制,确定砾岩沉积是否与构造活动同期或存在时间延迟需对砾岩本身开展详细沉积学分析。在实际工作中经常会发现一些盆地的沉积序列是以砾岩开始,指示砾岩沉积与盆地沉降同期。值得注意的是,层序底部砾岩的沉积特征虽指示它们属于碎屑流或高密度流快速沉积,形成于冲积扇和辫状河沉积环境,但这些砾岩的砾石不仅具有极好的磨圆度,而且多为抗风化稳定岩石。柴达木盆地东部泥盆系牦牛山组下段砾岩提供了一个实例(图7)。沉积学分析表明,牦牛山组下段砾岩为再旋回(recycled)砾岩。换句话说,砾岩在形成之前,砾岩的砾石在物源区或流域盆地已经历了长期磨蚀和多期搬运,导致砾石具很好的磨圆以及为稳定抗风化岩石。当构造活动导致物源区隆升时,这些已堆积在流域盆地中的砾石可直接搬运到相邻盆地之中,形成盆地沉积层序底部的单成分砾岩。

4 磨拉石:定义、使用与讨论

磨拉石(molasse)和复理石(flysch)是地槽学说遗留下来的两个地质术语,它们在欧洲有关阿尔卑斯造山带和其北部前陆盆地的研究中仍在使用。磨拉石和复理石在其他大陆地质研究中偶尔使用,但在中国地质文献中却经常看到。磨拉石主要有两种用法:① 仅仅描述沉积相组合,即一套海陆交互沉积相组合,包括砾岩、砂岩、页岩、泥灰岩等; ② 赋予这套沉积相组合特殊构造内涵,认为磨拉石沉积指示造山带发生强烈挤压抬升。磨拉石和复理石在欧洲大地构造研究中主要用于重建第三纪阿尔卑斯造山过程,认为复理石沉积发生在造山作用之前和初期,磨拉石则是同造山过程的沉积记录(Matter et al.,1980; Homewood et al.,1986; Allen et al.,1991; Sinclair,1997; Pfiffner et al.,2002; Kempf and Pfiffner,2004)。图8 显示周缘前陆盆地发展过程中复理石和磨拉石的形成,它们分别记录了碰撞造山过程的不同阶段。在阿尔卑斯造山带北侧第三纪周缘前陆盆地,复理石与磨拉石呈连续沉积(Allen et al.,1991; Sinclair,1997),即由大陆斜坡/海沟泥岩和浊积岩构成的深水沉积体系(复理石)向浅海/三角洲/河流/冲积扇构成的海陆交互沉积体系(磨拉石)逐渐过渡。由于复理石-磨拉石沉积序列的连续性,所以磨拉石由海相和陆相沉积共同组成。复理石包括大陆斜坡半深海泥岩和浊积岩(图8a),它们与被动陆缘缓坡碳酸盐岩共同构成 “欠充填三位一体(underfilled trinity)”(Sinclair,1997)。随着前陆逆冲带向前推移,近源复理石卷入到逆冲带中,经历强烈变形和不同程度变质作用。海相磨拉石在近源区与下伏变形的复理石呈不整合接触,但在远源区与复理石连续过渡或直接沉积在被动陆缘地层之上(图8b)。持续推覆作用导致部分海相磨拉石变形,陆相磨拉石在近源区不整合在海相磨拉石之上(图8c)。在古老造山带的周缘前陆盆地中,上部陆相磨拉石通常得以较好保存。

van Houten(1973)十分清晰地定义了“磨拉石”,明确指出其形成于造山过程的后期阶段。侯泉林等(2018)对磨拉石概念的由来以及在应用中所存在的问题进行了评述,认同磨拉石是同造山(synorogenic)沉积或是碰撞造山过程的沉积响应。一些学者扩展了磨拉石的应用范围,将磨拉石划分为伸展、挤压和剪切三种类型,分别代表与伸展、挤压和走滑构造相关的盆地沉积(夏邦栋等,1989; 周鼎武等,1996)。这种分类赋予磨拉石更多更复杂的构造内涵,偏离了磨拉石原有定义。另一些学者则将造山期后(postorogenic)不整合在褶皱带之上的河流/冲积扇砾岩称为磨拉石,如东昆仑构造带北侧泥盆纪牦牛山组砾岩(陈守建等,2007)、祁连山造山带北侧下泥盆统老君山砾岩(黄第藩,1966)以及西秦岭上泥盆统大草滩组砾岩-砂岩组合(霍福臣和李永军,1995)。然而,这些砾岩常与火山岩/火山碎屑岩共生,向上过渡为河流/湖泊或海相碎屑岩和碳酸盐岩,它们共同组成一套连续沉积层序(图7)。另外,上覆沉积-火山序列与下伏强烈变质变形岩系之间的角度不整合经常指示一个长时间沉积间断,如牦牛山组与下伏滩间山组之间缺失志留系地层。因此,不整合面之上的沉积和火山活动显然与早期碰撞造山过程无关,是另一次构造作用(如地壳伸展断陷)的结果。将造山期后地层序列底部砾岩或粗碎屑岩定义为“磨拉石”也偏离了磨拉石原始定义,因为它不是同造山作用的产物。如果要限定碰撞造山作用的停止时间,研究不整合面的性质和时限就可解决,无需将上覆层序底部砾岩定义为“磨拉石”。还有研究者将陆内构造带内部或边缘出现的砾岩定义为“磨拉石”,如燕山构造带上三叠统邓杖子组砾岩和中侏罗统郭家店组砾岩(徐刚等,2005)以及青藏高原北缘上新统玉门砾岩、西域砾岩和积石砾岩等(李吉均等,2015)。这些所谓的“磨拉石”皆是一些砾岩沉积体或岩石地层单元,它们的形成过程与板块碰撞以及周缘前陆盆地演化毫无关联,不符合“磨拉石”的定义。磨拉石经常被解释或理解为砾岩沉积,部分原因可能与molasse的中文翻译相关。“磨拉石”无论在字面和发音上都容易使人将其理解为一套陆相粗碎屑沉积物,很难联想到其内部还包含海相细粒沉积物,如陆棚环境的薄层细砂岩、粉砂岩和泥岩。

图7(a)柴达木盆地东缘古生代层序; 泥盆系牦牛山组与滩间山群变质岩系为角度不整合,与下石炭统为平行不整合接触。牦牛山组下段为厚层和块状砾岩,常被称为“磨拉石”;(b)牦牛山组下段砾岩;(c)中段交错层和平行层状砂岩;(d)上段火山岩和火山碎屑岩; 牦牛山组沉积-火山序列是泥盆纪构造-岩浆活动的地质记录,与早古生代构造演化无关

Fig.7 (a) Paleozoic stratigraphy in the eastern Qaidam basin; an angular unconformity separates the Devonian Maoniushan Formation from the Cambrian-Ordovician Tanjianshan Group, and a disconformity exists between the Devonian and Carboniferous units; the conglomerate in the lower part of the Maoniushan Formation is often called “molasse” in the literature; (b) conglomerate in the lower Maoniushan Formation; (c) cross-and parallel-bedded sandstone in the middle Maoniushan Formation; (d) andesitic volcanics in the upper Maoniushan Formation. Note that the Maoniushan sedimentary-volcanic succession is a geologic record of Devonian tectonic-magmatic processes, and has little to do with Early Paleozoic tectonics

图8 复理石与磨拉石形成过程

Fig.8 Diagram showing the formation of flysch and molasse

(a)—由半深海泥岩和碎屑浊积岩构成的复理石形成在周缘前陆盆地前渊带;(b)—海相磨拉石在近源区不整合在变形的复理石之上,在远源区与复理石连续沉积;(c)—陆相磨拉石在近源区不整合在变形的海相磨拉石/复理石之上,在远源区连续沉积在海相磨拉石之上或不整合沉积在被动大陆地层之上

(a) —Flysch, made up with hemiplegic mudstone and clastic turbidite, is deposited in foredeep zone of peripheral foreland basin; (b) —marine molasse rests unconformably over the deformed flysch in proximal region but is in a conformable contact with distal flysch; (c) —freshwater molasse unconformably overlies the deformed marine molasse in proximal region but is conformable with distal marine molasse or deposited directly over passive continental margin

地槽假说在板块构造理论建立前一直主导地学研究。为了描述地槽的形成和沉积充填过程,前复理石、复理石和磨拉石等术语被普遍采纳(Pettijohn,1957; Trümpy,1960; Aubouin,1965)。许多研究者将复理石和磨拉石沉积与地槽构造演化密切联系起来,强调这两个术语的构造含义(Kay,1951; de Sitter,1964; 黄汲清等,1977)。Eardley and White(1947) 详细回顾了复理石和磨拉石术语的来龙去脉,并且讨论了欧洲和美国在使用这两个术语的差异,认为复理石和磨拉石的用法基本相当于美国地质学家使用的岩石地层单位“组”。他们建议应避免使用复理石和磨拉石,因为赋予这两个术语构造内涵只会引起困扰。Miall(1984) 也对复理石和磨拉石概念进行了全面深刻的评述,列举了这两个术语的使用所造成的各种矛盾和误解,认为应该停止使用这两个词语,建议把“磨拉石”囊括的不同岩相组合划分为不同的“岩性组”来进行详细分析。

在板块构造框架下,对造山带和相关盆地演化历史的重建可依据对地层序列、沉积岩相、构造变形以及它们时空变化的详细观察和认真分析。“磨拉石”术语的使用既没有促进沉积学和盆地研究的深入,也没有对造山带演化研究有实质性的贡献。每个造山带的演化都有其自己的特点,需细致认真剖析,用“复理石”和“磨拉石”简单概括一个造山带的演化历史会遗漏很多重要地质过程。板块汇聚碰撞可能涉及复杂构造过程,如板块斜向汇聚缝合、具不规则边缘的板块碰撞以及深部构造作用的参与都会直接和间接地影响板块碰撞方式、地壳变形等方方面面。复杂碰撞过程在影响造山带前陆和后陆逆冲推覆构造的同时,也控制了相邻盆地的沉降、充填和沉积物供给方式。地层沉积充填序列记录了每个造山带特有的变形、抬升、剥蚀和沉积物搬运历史,与阿尔卑斯北侧周缘前陆盆地复理石-磨拉石沉积充填过程可能完全不同。笔者同样建议避免使用“磨拉石”这一术语。造山带演化历史的重建应建立在详细的地层学、沉积学和盆地分析等研究基础之上。

5 结语

砾岩形成于不同沉积和构造环境,受多种因素的控制。冲积扇、扇三角洲和水下扇是砾岩最为发育的沉积体系。地层中砾岩的时空分布特征以及砾岩本身的岩相特征可用来限定相邻构造带的活动历史。当沉积物供给相对稳定,盆地沉降速率是砾岩沉积过程和空间分布的主控因素。盆地近源区砾岩楔形体的发育反映盆地可容空间大或盆地构造沉降幅度大,指示盆缘构造带发生强烈活动。广泛分布的砾岩指示盆地可容空间减小以及砾石经历长距离搬运,这种遍布盆地的砾岩反映相邻构造带活动减弱或停止。砾岩沉积体分布范围以及厚度时空变化是恢复盆缘构造过程的重要依据。

参考文献

Alexander J, Leeder M R. 1987. Active tectonic control on alluvial architecture. Society of Economic Paleontologists and Mineralogists Special Publication, 39: 243~252.

Allen P A. 2008. From landscapes into geological history. Nature, 451 (7176): 274~276.

Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. Hobergen: Wiley-Blackwell, 188~222.

Allen P A, Heller P L. 2012. The timing, distribution and significance of tectonically generated gravels in terrestrial sediment routing systems. In: Busby C, Azor Pérez A, eds. Tectonics of Sedimentary Basins: Recent Advances. Hobergen: Wiley-Blackwell, 111~130.

Allen P A, Homewood P. 1986. Foreland Basins, International Association of Sedimentologists Special Publication 8. Oxford: Blackwell Scientific Publications, 229~246.

Allen P A, Crampton S, Sinclair H D. 1991. Inception and early evolution of the North Alpine foreland basin, Switzerland. Basin Research, 3: 143~163.

Allen P A, Densmore A L. 2000. Sediment flux from an uplifting fault block. Basin Research, 12: 3674~380.

Allen P A, Hovius N. 1998. Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Research, 10: 19~35.

Anders M H, Christie-Blick N, Templeton J A. 2022. Tectonic evolution of the Devonian Hornelen basin of western Norway. In: Koeberl C, Claeys P, Montanari A, eds. From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez. Geological Society of America Special Paper, 557: 223~238.

Aubouin J. 1965. Geosynclines. Developments in Geotectonics 1. Amsterdam: Elsevier.

Aydin A, Nur A. 1982. Evolution of pull-apart basins and their scale independence. Tectonics, 1: 91~105.

Aydin A. Nur A. 1985. The types and roles of stepovers in strike-slip tectonics. In: Biddle K T, Christie-Blick N, eds. Strike-Slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 37: 35~44.

Beaumont C. 1981. Foreland basins. Geophysical Journal Royal Astronomical Society, 65: 291~329.

Blair T C, Bilodeau W L. 1988. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism. Geology, 16: 517~520.

Blair T C, McPherson J G. 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages. Journal of Sedimentary Research, A64: 450~589.

Boggs S Jr, 2009. Petrology of Sedimentary Rocks. Cambridge: Cambridge University Press.

Bull W B. 1991. Geomorphic Responses to Climatic Change. New York: Oxford University Press.

Burchfiel B C, Zhang P, Chen S, Deng Q. 1989. Extinction of pull-apart basins. Geology, 17: 814~817.

Chen S F, Wilson C J L, Luo Z, Deng Q. 1994. The evolution of the western Sichuan basin, SW China. Journal of Southeast Asian Earth Sciences, 10: 159~168.

Chen Shoujian, Li Rongshe, Ji Wenhua, Zhao Zhenming, Li Yong, Shi Bingde. 2007. The depositional characteristics and tectonic paleogeographic environments of the Kunlun orogenic belt in the Late Devonian. Geotectonica et Metallogenia, 31(1): 44~51 (in Chinese with English abstract).

Christie-Blick N, Biddle K T. 1985. Deformation and basin formation along strike-slip faults. In: Biddle K T, Christie-Blick N, eds. Strike-slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 37: 1~34.

Clift P D, Blusztajn J. 2005. Reorganization of the western Himalayan river system after five million years ago. Nature, 438: 1001~1003.

Colella A, Prior D B. 1990. Coarse-grained deltas. International Association of Sedimentologists, Special Publication, 10: 357.

Collinson J D. 1996. Alluvial sediments. In: Reading H G, ed. Sedimentary Environments: Processes, Facies and Stratigraphy. Oxford: Blackwell Science, 37~82.

Crowell J C. 1982. The Violin breccia, ridge basin, southern California. In: Crowell J C, Link M H, eds. Geologic History of Ridge Basin, Southern California: Pacific Section. Society of Economic Paleontologists and Mineralogists, Special Publication, 89~98.

Crowell J C, Link M H. 1982. Geologic History of Ridge Basin, Southern California: Pacific Section. Society of Economic Paleontologists and Mineralogists, Special Publication.

de Sitter L U. 1964. Structural Geology. New York: McGraw-Hill Book Co.

DeCelles P G. 1988. Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: a case of multiple source areas. Geology, 16: 1039~1043.

DeCelles P G, Gray M B, Ridgway K D, Cole R B, Pivnik D A, Pequera N , Srivastava P. 1991. Controls on synorogenic alluvial fan architecture, Beartooth Conglomerate (Paleocene), Wyoming and Montana. Sedimentology, 38: 567~590.

DeCelles P G, Giles K A. 1996. Foreland basin systems. Basin Research, 8: 105~124.

DeCelles P G, Lawton T F, Mitra G. 1995. Thrust timing, growth of structural culminations, and synorogenic sedimentation in the type Sevier orogenic belt, western United States. Geology, 23: 699~702.

Densmore A L, Allen P A, Simpson G. 2007. Development and response of a coupled catchment-fan system under changing tectonic and climatic forcing. Journal of Geophysical Research Earth Surface, 112: F01002.

Eardley A J, White M G. 1947. Flysch and molasse. Bulletin of Geological Society of America, 68: 979~989.

Flemings P B, Jordan T E. 1989. A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research, 94: B4, 3851~3866.

Folk R L. 1974. Petrology of Sedimentary Rocks. Austin: Hemphill Publishing Co.

Friedrnann S J, Burbank D W. 1995. Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Research, 7: 109~127.

Frostick L E, Reid I. 1989. Climatic versus tectonic controls of fan sequences: lessons from the Dead Sea, Israel. Journal of the Geological Society of London, 146: 527~538.

Gao Xiaofeng, Jiao Peixi, Jia Qunzi. 2011. Redetermination of the Tanjianshan Group: geochronologic and geochemical evidence of basalts from the margin of the Qaidam basin. Acta Geologica Sinica, 85 (9): 1452~1463 (in Chinese with English abstract).

Garcia-Castellanos D, Cloetingh S. 2012. Modelling the interaction between lithospheric and surface processes in foreland basins. In: Busby C, Azor A, eds. Tectonics of Sedimentary Basins, Recent Advances. Oxford: Wiley-Blackwell, 152~181.

Garcia-Castellanos D. 2002. Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14: 89~104.

Gawthorpe R L, Leeder M R. 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research, 12: 195~218.

Gordon I, Heller P L. 1993. Evaluating major controls on basinal stratigraphy, Pine Valley, Nevada: implications for syntectonic deposition. Geological Society of America Bulletin, 105: 47~55.

Gürbüz A. 2010. Geometric characteristics of pull-apart basins. Lithosphere, 2. Geological Society of America, 199~206.

Hartley A J. 1993. Sedimentological response of an alluvial system to source area tectonism: The Seilao Member of the Late Cretaceous to Eocene Purilactis Formation of northern Chile. In: Marzo M, Puigdefabregas C, eds. Alluvial sedimentation. International Association of Sedimentologists Special Publication, 17: 489~500.

Harvey A M, Mather A E, Stokes M. 2005. Alluvial fans: geomorphology, sedimentology, dynamics, introduction, a review of alluvial-fan research. Geological Society of London Special Publications, 251: 1~7.

Heller P L, Angevine C L, Winslow N S, Paola C. 1988. Two-phase stratigraphic model of foreland-basin sequences. Geology, 16: 501~504.

Heller P L, Paola C. 1992. The large-scale dynamics of grain-size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Research, 4: 91~102.

Homewood P, Allen P A, Williams G D. 1986. Dynamics of the Molasse Basin of western Switzerland. In: Allen P A, Homewood P. Foreland Basins. International Association of Sedimentology Special Publication, 8: 199~217.

Hou Quanlin, Guo Qianqian, Fang Aimin. 2018. Discussions on some basic problems in the research of orogenic belts concerning on flysch and molasse. Acta Petrologica Sinica, 34 (7): 1885~1896 (in Chinese with English abstract).

Huang Difan, 1966. The study of the Laojunshan Group in the northern slope of the eastern segment of the North Qilian Shan. Geological Review, 24 (1): 2~7 (in Chinese with English abstract).

Huang T K, Jen Chishun, Jiang Chunfa, Chang Chihmeng, Xu Zhiqin. 1977. An outline of the tectonic characteristics of China. Acta Geologica Sinica, (2): 117~135 (in Chinese with English abstract).

Huo Fucheng, Li Yongjun. 1995. Sedimentary Formations and Geologic Evolution of the West Qinling Orogen. Xi’an: Northwest University Press (in Chinese with English abstract).

Ingersoll R V. 1988. Tectonics of sedimentary basins. Geological Society of America Bulletin, 100: 1704~1719.

Jordan T E. 1981. Thrust loads and foreland basin evolution, Cretaceous, western United States. American Association of Petroleum Geologists Bulletin, 65: 2506~2520.

Jordan T E, Flemings P B, Beer J A. 1988. Dating thrust-fault activity by use of foreland-basin strata. In: Kleinspehn K L, Paola C, eds. New Perspectives in Basin Analysis. New York: Springer-Verlag, 307~330.

Kay M. 1951. North American Geosyncline. Geological Society of America Memoir, 48: 143.

Kempf O, Pfiffner O A. 2004. Early Tertiary evolution of the North Alpine foreland basin of the Swiss Alps and adjoining areas. Basin Research, 16: 549~567.

Koster E H, Steel R J. 1984. Sedimentology of Gravels and Conglomerates. Memoir 10, Calgary: Canadian Society of Petroleum Geology.

Leeder M R, Gawthorpe R L. 1987. Sedimentary models for extensional tilt-block/ half-graben basins. In: Coward M P, Dewey J F, Hancock P L, eds. Continental Extensional Tectonics. Geological Society Special Publication, 28: 139~152

Leeder M R, Jackson J. 1993. Interaction between normal faulting and drainage in active extensional basins, with examples from western United States and mainland Greece. Basin Research, 5: 79~102.

Li Jijun, Zhou Sangzhe, Zhao Zhijun, Zhang Jun. 2015. The Qingzang Movement: the major uplift of the Qinghai-Tibetan Plateau. Science China: Earth Sciences, 58: 2113~2122.

Mack G H, Leeder M R. 1999. Climatic and tectonic controls on alluvial fan and axial-fluvial sedimentation in the Plio-Pleistocene Palomas half graben, southern Rio Grande Rift. Journal of Sedimentary Research, 69: 635~652

Mann P. 2007. Global catalogue, classification and tectonic origins of restraining and releasing bends on active and ancient strike-slip fault systems. In: Cunningham W D, Mann P, eds. Tectonics of Strike-slip Restraining and Releasing Bends. Geological Society of London, Special Publications, 290: 13~142.

Mann P, Hempton M R, Bradley D C, Burke K. 1983. Development of pull-apart basins. Journal of Geology, 91: 529~554.

Matter A, Homewood P, Caron C, Rigassi D, van Stuijvenberg J, Weidmann M, Winkler W. 1980. Flysch and Molasse of Western and Central Switzerland (excursion No. V). In: Geology of Switzerland, A guidebook. Wepf, Basel/New York, Part B, 261~293.

May S R, Ehman K D, Gray G G, Crowell J C. 1993. A new angle on the tectonic evolution of the Ridge basin, a "strike-slip" basin in southern California. Geological Society of America Bulletin, 105(10): 1357~1372.

McClay K R, Dooley T. 1995. Analogue models of pull-apart basins. Geology, 23: 711-714. McKenzie D P. 1978. Some remarks on the development of sedimentary basins. Earth Planetary Science Letters, 40: 25~32.

Meng Q R, Wang E, Hu J M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geological Society of America Bulletin, 117: 396~410.

Miall A D. 1978. Tectonic setting and syndepositional deformation of molasse and other nonmarine-paralic sedimentary basins. Canadian Journal of Earth Sciences, 15(10): 1613~1632.

Miall A D. 1984. Flysch and Molasse: the elusive models. Ann. Soc. Geol. Poloniae, 54(3-4): 281~291.

Molnar P. 2001. Climate change, flooding in arid environments, and erosion rates. Geology, 29: 1071~1074.

Montgomery D R, Brandon M T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201: 481~489.

Nemec W, Steel R J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster E H, Steel R J. Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geology Memoir 10, 1~31.

Nemec W, Steel R J. 1988. Fan Delta-Sedimentology and Tectonic Settings. London: Blackie.

Nichols G J. 1987. Syntectonic alluvial fan sedimentation, southern Pyrenees. Geological Magazine, 124: 121~133.

Nilsen T H, McLaughlin R J. 1985. Comparison of tectonic framework and depositional patterns of the Hornelen strike-slip basin of Norway and the Ridge and Little Sulphur Creek strike-slip basins of California. In: Biddle K T, Christie Blick N, eds. Strike-Slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication, 37: 79~103.

Nilsen T H, Sylvester A G. 1995. Strike-slip basins. In: Busby C J, Ingersoll R V, eds. Tectonics of Sedimentary Basins. Oxford: Blackwell Publishing Ltd, 425~457.

Paola C. 1988. Subsidence and gravel transport in alluvial basins. In: Kleinspehn K L, Paola C, eds. New perspectives in basin analysis. New York: Springer Verlag, 231~243.

Paola C, Swenson J B. 1998. Geometric constraints on composition of sediment derived from erosional landscapes. Basin Research, 10: 37~47.

Pettijohn F J. 1975. Sedimentary Rocks, 3rd ed. New York: Harper and Row.

Pfiffner O A, Schlunegger F, Buiter S J H. 2002. The Swiss Alps and their peripheral foreland basin: stratigraphic response to deep crustal processes. Tectonics, 21: 1009.

Prosser S. 1993. Rift-related linked depositional systems and their seismic expression. In: Williams G D, Dodds A, eds. Tectonics and Seismic Sequence Stratigraphy. Geological Society London, Special Publication, 71: 35~66.

Prothero D R, Schwab F. 2014. Sedimentary Geology: An introduction to Sedimentary Rocks and Stratigraphy, 3rd ed. New York: W. H. Freeman and Co.

Quigley M C, Sandiford M, Cupper M L. 2007. Distinguishing tectonic from climatic controls on range-front sedimentation. Basin Research, 19: 491~505.

Reading H G. 1980. Characteristics and recognition of strike-slip fault systems. In: Ballance P F, Reading H G, eds. Sedimentation in Oblique-Slip Mobile Zones. International Association of Sedimentologists, Special Publication, 4: 7~26.

Richards M, Bowman M, Reading H G. 1998. Submarine-fan systems 1: characterization and stratigraphic prediction. Marine and Petroleum Geology, 15(7): 689~717

Schümm S A. 1963. The disparity between present rates of denudation and orogeny: U. S. Geological Survey Professional Paper, 454-H: 13.

Simpson G D H. 2006. Modelling interactions between fold-thrust belt deformation, foreland flexure and surface mass transport. Basin Research, 18: 1~19

Sinclair H D. 1997. Tectono-stratigraphic model for underfilled peripheral foreland basins: an Alpine perspective. Geological Society of America Bulletin, 109: 324~346.

Sinclair H D. 2012. Thrust wedge/foreland basin systems. In: Busby C, Azor A, eds. Tectonics of Sedimentary Basins: Recent Advances. Hobergen: Wiley-Blackwell, 522~537.

Steel R J, Maehle S, Nilsen H R, Roe S L, Spinnangr A. 1977. Coarsening-upward cycles in the alluvium of Hornelen Basin (Devonian, Norway): Sedimentary response to tectonic events. Geological Society of America Bulletin, 88: 1124~1134.

Sylvester A G. 1988. Strike-slip faults. Geological Society of America Bulletin, 100: 1666~1703.

Trümpy R. 1960. Paleotectonic evolution of the central and western Alps. Geological Society of America Bulletin, 71: 843~907.

Tucker G E, Slingerland R. 1996. Predicting sediment flux from fold and thrust belts. Basin Research, 8: 329~349.

Van Houten F B. 1973. Meaning of Molasse. Geological Society of America Bulletin, 84: 1973~1976.

Whipple K X. 2009. The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2: 97~104.

Whipple K X, Traylor C R. 1996. Tectonic control on fan size: the importance of spatially variable subsidence rates. Basin Research, 8: 351~366.

Whittaker A C, Attal M, Allen P A. 2010. Characterizing the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22: 809~828.

Wu J E, McClay K, Whitehouse P, Dooley T. 2009. 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology 26: 1608~1623

Xia Bangdong, Fang Zhong, Lu Hongbo, Yu Jinhai. 1989. Molasse and global tectonics. Experimental Petroleum Geology, 11(4): 314~319 (in Chinese with English abstract).

Xie X, Heller P L. 2009. Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121: 55~64.

Xu Gang, Zhao Yue, Wu Hai, Zhang Shuanghong, 2005. Late Triassic-Middle Jurassic Stratigraphic Succession in the Niuyingzi Basin, Lingyuan County, Western Liaoning and the Correlation of Regional Stratigraphic Sequences in the Yanliao Region. Acta Geoscientica Sinica, 26(4): 299~308 (in Chinese with English abstract).

Yong L, Allen P A, Densmore A L, Qing X. 2003. Evolution of the Longmen Shan foreland basin (western Sichuan Basin) during the Late Triassic Indosinian orogen: Basin Research, 15: 117~138.

Zhang Yaoling, Ni Jinyu, Shen Yanxu, Wang Chaoqu, Gao Wanli, Hu Daogong, 2018. Zircon U-Pb ages and geological significance of volcanic rocks from Maoniushan Formation in the northern Qaidam basin. Geoscience, 32 (2): 329~334 (in Chinese with English abstract).

Zhang P, Molnar P, Downs W R. 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410: 891~897.

Zhou Dingwu, Dong Yunpeng, Hua Hong, Liu Yingyu, 1996. The significance of molasse formation and unconformity in the stratigraphic division and correlation: evidence from the Late Precambrian strata of the Yangtze Plate and its northern margin. Geological Review, 42(5): 416~423 (in Chinese with English abstract).

陈守建, 李荣社, 计文化, 赵振明, 孟勇, 史秉德. 2007. 昆仑造山带晚泥盆世沉积特征及构造古地理环境. 大地构造与成矿, 31(1): 44~51.

高晓峰, 校培喜, 贾群子. 2011. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据. 地质学报, 85 (9): 1452~1463.

侯泉林, 郭谦谦, 方爱民. 2018. 造山带研究中有关复理石和磨拉石的几个问题. 岩石学报, 34(7): 1885~1896.

黄第藩. 1966. 北祁连山东段北麓老君山群的研究. 地质论评, 24(1): 2~7.

黄汲清, 任纪舜, 姜春发, 张之孟, 许志琴. 1977. 中国大地构造基本轮廓. 地质学报, (2): 117~135.

霍福臣, 李永军. 1995. 西秦岭造山带的建造与地质演化. 西安: 西北大学出版社.

李吉均, 周尚哲, 赵志军, 张军. 2015. 论青藏运动主幕. 中国科学: 地球科学, 45: 1597~1608.

夏邦栋, 方中, 吕洪波, 于津海. 1989. 磨拉石与全球构造. 石油实验地质, 11(4): 314~319.

徐刚, 赵越, 吴海, 张栓宏. 2005. 辽西凌源牛营子盆地晚三叠世—中侏罗世地层层序及区域对比. 地球学报, 26(4): 299~308.

张耀玲, 倪晋宇, 沈燕绪, 王超群, 高万里, 胡道功. 2018. 柴北缘牦牛山组火山岩锆石U-Pb年龄及其地质意义. 现代地质, 32(2): 329~334.

周鼎武, 董云鹏, 华洪, 刘颖宇. 1996. “磨拉石建造”和“不整合”在地层对比中的意义——以扬子地块及其北缘晚前寒武纪地层为例. 地质论评, 42(5): 416~423.



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭