linux中怎么压缩一个文件夹

您所在的位置:网站首页 家里wifi如何设置密码保护功能 linux中怎么压缩一个文件夹

linux中怎么压缩一个文件夹

2024-07-10 19:26:03| 来源: 网络整理| 查看: 265

1、将/home/wwwroot/xahot/ 这个目录下所有文件和文件夹打包为当前目录下的xahot.zip

zip –q –r xahot.zip /home/wwwroot/xahot

2、上面的命令操作是将绝对地址的文件及文件夹进行压缩。以下给出压缩相对路径目录,比如目前在Bliux这个目录下,执行以下操作可以达到以上同样的效果。

zip –q –r xahot.zip xahot

3、比如现在我的xahot目录下,我操作的zip压缩命令是

zip –q –r xahot.zip *

4、然后就完成了。

归档,也称为打包,指的是一个文件或目录的集合,而这个集合被存储在一个文件中。归档文件没有经过压缩,因此,它占用的空间是其中所有文件和目录的总和。

和归档文件类似,压缩文件也是一个文件和目录的集合,且这个集合也被存储在一个文件中,但它们的不同之处在于,压缩文件采用了不同的存储方式,使其所占用的磁盘空间比集合中所有文件大小的总和要小。

压缩是指利用算法将文件进行处理,已达到保留最大文件信息,而让文件体积变小的目的。其基本原理为,通过查找文件内的重复字节,建立一个相同字节的词典文件,并用一个代码表示。比如说,在压缩文件中,有不止一处出现了

"C语言中文网",那么,在压缩文件时,这个词就会用一个代码表示并写入词典文件,这样就可以实现缩小文件体积的目的。

由于计算机处理的信息是以二进制的形式表示的,因此,压缩软件就是把二进制信息中相同的字符串以特殊字符标记,只要通过合理的数学计算,文件的体积就能够被大大压缩。把一个或者多个文件用压缩软件进行压缩,形成一个文件压缩包,既可以节省存储空间,有方便在网络上传送。

如果你能够理解文件压缩的基本原理,那么很容易就能想到,对文件进行压缩,很可能损坏文件中的内容,因此,压缩又可以分为有损压缩和无损压缩。无损压缩很好理解,指的是压缩数据必须准确无误有损压缩指的是即便丢失个别的数据,对文件也不会造成太大的影响。有损压缩广泛应用于动画、声音和图像文件中,典型代表就是影碟文件格式

mpeg、音乐文件格式 mp3 以及图像文件格式 jpg。

采用压缩工具对文件进行压缩,生成的文件称为压缩包,该文件的体积通常只有原文件的一半甚至更小。需要注意的是,压缩包中的数据无法直接使用,使用前需要利用压缩工具将文件数据还原,此过程又称解压缩。

Linux下,常用归档命令有2个,分别是tar和dd(相对而言,tar的使用更为广泛)常用的压缩命令有很多,比如gzip、zip、bzip2等。

Concepts overview — The Linux Kernel documentation

Linux中的内存管理是一个复杂的系统,经过多年的发展,它包含越来越多的功能,以支持从 MMU-less microcontrollers 到 supercomputers 的各种系统。

没有MMU内存管理的系统被称为 nommu ,它值得写一份专门的文档进行描述。

尽管有些概念是相同的,这里我们假设MMU可用,CPU可以将虚拟地址转换为物理地址。

计算机系统中的物理内存是有限资源,即便支持内存热插拔,其可以安装的内存也有限的。物理内存不一定必须是连续的;它可以作为一组不同的地址范围被访问。此外,不同的CPU架构,甚至同架构的不同实现对如何定义这些地址范围都是不同的。

这使得直接处理物理内存异常复杂,为了避免这种复杂性,开发了 虚拟内存 (virtual memory) 的概念。

虚拟内存从应用软件中抽象出物理内存的细节,只允许在物理内存中保留需要的信息 (demand paging) ,并提供一种机制来保护和控制进程之间的数据共享。

通过虚拟内存,每次内存访问都访问一个 虚拟地址 。当CPU对从系统内存读取(或写入)的指令进行解码时,它将该指令中编码的虚拟地址转换为内存控制器可以理解的物理地址。

物理内存被切分为 页帧 page frames 或 页 pages 。页的大小是基于架构的。一些架构允许从几个支持的值中选择页大小;此选择在内核编译时设置到内核配置。

每个物理内存页都可以映射为一个或多个 虚拟页(virtual pages) 。映射关系描述在 页表(page tables) 中,页表将程序使用的虚拟地址转换为物理内存地址。页表以层次结构组织。

最底层的表包含软件使用的实际内存页的物理地址。较高层的表包含较低层表页的物理地址。顶层表的指针驻留在寄存器中。

当CPU进行地址转换的时候,它使用寄存器访问顶级页表。

虚拟地址的高位,用于顶级页表的条目索引。然后,通过该条目访问下级,下级的虚拟地址位又作为其下下级页表的索引。虚拟地址的最低位定义实际页内的偏移量。

地址转换需要多次内存访问,而内存访问相对于CPU速度来说比较慢。为了避免在地址转换上花费宝贵的处理器周期,CPU维护着一个称为 TLB (Translation Lookaside Buffer)的用于地址转换缓存(cache)。通常TLB是非常稀缺的资源,需要大内存工作应用程序会因为TLB未命中而影响性能。

很多现代CPU架构允许页表的高层直接映射到内存页。例如,x86架构,可以通过二级、三级页表的条目映射2M甚至1G内存页。在Linux中,这些内存页称为 大页 (Huge) 。大页的使用显著降低了TLB的压力,提高了TLB命中率,从而提高了系统的整体性能。

Linux提供两种机制开启使用大页映射物理内存。

第一个是 HugeTLB 文件系统,即 hugetlbfs 。它是一个伪文件系统,使用RAM作为其存储。在此文件系统中创建的文件,数据驻留在内存中,并使用大页进行映射。

关于 HugeTLB Pages

另一个被称为 THP (Transparent HugePages) ,后出的开启大页映射物理内存的机制。

与 hugetlbfs 不同,hugetlbfs要求用户和/或系统管理员配置系统内存的哪些部分应该并可以被大页映射;THP透明地管理这些映射并获取名称。

关于 Transparent Hugepage Support

通常,硬件对不同物理内存范围的访问方式有所限制。某些情况下,设备不能对所有可寻址内存执行DMA。在其他情况下,物理内存的大小超过虚拟内存的最大可寻址大小,需要采取特殊措施来访问部分内存。还有些情况,物理内存的尺寸超过了虚拟内存的最大可寻址尺寸,需要采取特殊措施来访问部分内存。

Linux根据内存页的使用情况,将其组合为多个 zones 。比如, ZONE_DMA 包含设备用于DMA的内存, ZONE_HIGHMEM 包含未永久映射到内核地址空间的内存, ZONE_NORMAL 包含正常寻址内存页。

内存zones的实际层次架构取决于硬件,因为并非所有架构都定义了所有的zones,不同平台对DMA的要求也不同。

多处理器机器很多基于 NUMA (Non-Uniform Memory Access system - 非统一内存访问系统 )架构。 在这样的系统中,根据与处理器的“距离”,内存被安排成具有不同访问延迟的 banks 。每个 bank 被称为一个 node ,Linux为每个 node 构造一个独立的内存管理子系统。 Node 有自己的zones集合、freeused页面列表,以及各种统计计数器。

What is NUMA?

NUMA Memory Policy

物理内存易失,将数据放入内存的常见情况是读取文件。读取文件时,数据会放入 页面缓存(page cache) ,可以在再次读取时避免耗时的磁盘访问。同样,写文件时,数据也会被放入 页面缓存 ,并最终进入存储设备。被写入的页被标记为 脏页(dirty page) ,当Linux决定将其重用时,它会将更新的数据同步到设备上的文件。

匿名内存 anonymous memory 或 匿名映射 anonymous mappings 表示没有后置文件系统的内存。这些映射是为程序的stack和heap隐式创建的,或调用mmap(2)显式创建的。通常,匿名映射只定义允许程序访问的虚拟内存区域。读,会创建一个页表条目,该条目引用一个填充有零的特殊物理页。写,则分配一个常规物理页来保存写入数据。该页将被标记为脏页,如果内核决定重用该页,则脏页将被交换出去 swapped out 。

纵贯整个系统生命周期,物理页可用于存储不同类型的数据。它可以是内核内部数据结构、设备驱动DMA缓冲区、读取自文件系统的数据、用户空间进程分配的内存等。

根据内存页使用情况,Linux内存管理会区别处理。可以随时释放的页面称为 可回收(reclaimable) 页面,因为它们把数据缓存到了其他地方(比如,硬盘),或者被swap out到硬盘上。

可回收页最值得注意的是 页面缓存 和 匿名页面 。

在大多数情况下,存放内部内核数据的页,和用作DMA缓冲区的页无法重用,它们将保持现状直到用户释放。这样的被称为 不可回收页(unreclaimable) 。

然而,在特定情况下,即便是内核数据结构占用的页面也会被回收。

例如,文件系统元数据的缓存(in-memory)可以从存储设备中重新读取,因此,当系统存在内存压力时,可以从主内存中丢弃它们。

释放可回收物理内存页并重新调整其用途的过程称为 (surprise!) reclaim 。

Linux支持异步或同步回收页,取决于系统的状态。

当系统负载不高时,大部分内存是空闲的,可以立即从空闲页得到分配。

当系统负载提升后,空闲页减少,当达到某个阈值( low watermark )时,内存分配请求将唤醒 kswapd 守护进程。它将以异步的方式扫描内存页。如果内存页中的数据在其他地方也有,则释放这些内存页;或者退出内存到后置存储设备(关联 脏页 )。

随着内存使用量进一步增加,并达到另一个阈值- min watermark -将触发回收。这种情况下,分配将暂停,直到回收到足够的内存页。

当系统运行时,任务分配并释放内存,内存变得碎片化。

虽然使用虚拟内存可以将分散的物理页表示为虚拟连续范围,但有时需要分配大的连续的物理内存。这种需求可能会提升。例如,当设备驱动需要一个大的DMA缓冲区时,或当THP分配一个大页时。

内存地址压缩(compaction ) 解决了碎片问题。

该机制将占用的页从内存zone的下部移动到上部的空闲页。压缩扫描完成后,zone开始处的空闲页就并在一起了,分配较大的连续物理内存就可行了。

与 reclaim 类似, compaction 可以在 kcompactd守护进程中异步进行,也可以作为内存分配请求的结果同步进行。

在存在负载的机器上,内存可能会耗尽,内核无法回收到足够的内存以继续运行。

为了保障系统的其余部分,引入了 OOM killer 。

OOM killer 选择牺牲一个任务来保障系统的总体健康。选定的任务被killed,以期望在它退出后释放足够的内存以继续正常的操作。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://outofmemory.cn/yw/7233298.html



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭